
IDPrime .NET Smart Card

Integration Guide

All information herein is either public information or is the property of and owned solely by Gemalto NV. and/or its subsidiaries
who shall have and keep the sole right to file patent applications or any other kind of intellectual property protection in
connection with such information.

Nothing herein shall be construed as implying or granting to you any rights, by license, grant or otherwise, under any
intellectual and/or industrial property rights of or concerning any of Gemalto’s information.

This document can be used for informational, non-commercial, internal and personal use only provided that:

• The copyright notice below, the confidentiality and proprietary legend and this full warning notice appear in all copies.

• This document shall not be posted on any network computer or broadcast in any media and no modification of any part of
this document shall be made.

Use for any other purpose is expressly prohibited and may result in severe civil and criminal liabilities.

The information contained in this document is provided “AS IS” without any warranty of any kind. Unless otherwise expressly
agreed in writing, Gemalto makes no warranty as to the value or accuracy of information contained herein.

The document could include technical inaccuracies or typographical errors. Changes are periodically added to the information
herein. Furthermore, Gemalto reserves the right to make any change or improvement in the specifications data, information,
and the like described herein, at any time.

Gemalto hereby disclaims all warranties and conditions with regard to the information contained herein, including all
implied warranties of merchantability, fitness for a particular purpose, title and non-infringement. In no event shall
Gemalto be liable, whether in contract, tort or otherwise, for any indirect, special or consequential damages or any
damages whatsoever including but not limited to damages resulting from loss of use, data, profits, revenues, or
customers, arising out of or in connection with the use or performance of information contained in this document.

Gemalto does not and shall not warrant that this product will be resistant to all possible attacks and shall not incur,
and disclaims, any liability in this respect. Even if each product is compliant with current security standards in force
on the date of their design, security mechanisms' resistance necessarily evolves according to the state of the art in
security and notably under the emergence of new attacks. Under no circumstances, shall Gemalto be held liable for
any third party actions and in particular in case of any successful attack against systems or equipment
incorporating Gemalto products. Gemalto disclaims any liability with respect to security for direct, indirect,
incidental or consequential damages that result from any use of its products. It is further stressed that independent
testing and verification by the person using the product is particularly encouraged, especially in any application in
which defective, incorrect or insecure functioning could result in damage to persons or property, denial of service or
loss of privacy.

© Copyright 2007-13 Gemalto N.V. All rights reserved. Gemalto and the Gemalto logo are trademarks and service marks of
Gemalto N.V. and/or its subsidiaries and are registered in certain countries. All other trademarks and service marks, whether
registered or not in specific countries, are the property of their respective owners.

GEMALTO, B.P. 100, 13881 GEMENOS CEDEX, FRANCE.

Tel: +33 (0)4.42.36.50.00 Fax: +33 (0)4.42.36.50.90

Printed in France. Document Reference: D1265202B

May 31, 2013
www.gemalto.com

http//www.gemalto.com

C
o

n
te

n
ts
Introduction xi

Who Should Read This Book . xi
Documentation . xi
Conventions . xi

Windows Versions . xi
Typographical Conventions .xii

PART I .NET CARD TECHNOLOGY

Chapter 1 Smart Card Background 2

Smart Card Basics . 2
Smart Card Hardware . 3

Smart Card . 3
Device/Interface . 4

Smart Card Software . 4
Operating System . 4
Applications . 5

The IDPrime .NET Card Components . 6
Windows 7 and 8 (and Server 2008 R2 and Server 2012) 6
Windows Vista and Server 2008 . 8
Windows XP and Server 2003 . 8

Cryptographic Application Programming Interface (CAPI) . 8
Introducing the Windows Smart Card Framework Architecture 9
Smart Card Standards and Specifications . 10
IDPrime .NET Smart Card Characteristics Summary . 11

Card Hardware Characteristics . 11
Card Software Characteristics . 11
Middleware Architecture . 11
Main Functions Supported . 11
Main Use Cases Supported . 12
Compliance with Operating Systems . 12
Compliance with Microsoft Applications . 12
Compliance with 3rd-Party Applications . 12

Chapter 2The IDPrime .NET Card 13

Background . 13
Why .NET on a Smart Card? . 13
IDPrime .NET Card Application Development . 14

IDPrime .NET Card Characteristics . 14
Card Contents . 14

File System . 14
CardConfig.xml File . 15
Access Manager Applications . 17
Additional Contents . 17
Assemblies . 17
Data Files . 17

Smart Card Profile . 18

iv IDPrime .NET Smart Card Integration Guide
.NET Card Specifications . 19
IDPrime .NET Card Certifications . 19

Common Language Runtime (CLR) . 20
Common Language Runtime (CLR) Responsibilities . 20

.NET Smart Card Framework Vs. .NET Framework . 21

Chapter 3 Concepts and Models 23

Assemblies . 23
Assemblies on the IDPrime .NET . 23
Assembly Security . 24
Loading Assemblies . 24

Application Domains . 25
Implementation . 25
Differences between IDPrime .NET Application Domains and Standard .NET
Application Domains . 25

Application Lifecycle . 26
Loading . 26
Installation . 26
Execution . 26
Termination . 26
Unloading . 26

Remoting . 27
Remoting in the .NET Smart Card Framework . 27
Channels and Ports . 28
Example . 29

Using Custom Sinks . 32
Why Make a Custom Sink? . 32
What Are the Limitations? . 32
Designing a Custom Sink . 32
Using a Custom Sink . 33

Garbage Collection . 34
Garbage Collection . 34
The GCControlAttribute . 34

File System . 35
Key Points about the IDPrime .NET File System . 35
Example . 35

Data Storage . 36
Data Stored in Persistent Memory . 36
Data Stored in Volatile Memory . 36
MemoryStreams . 37

Transactions . 37
Why Transactions? . 37
How Transactions Work . 37
Out-of-Transaction Objects . 38

Security . 39
Access Manager . 40
Application Security . 41
Data Security . 44

Supporting Legacy Infrastructure . 45
Who Should Read This Section? . 45
The Problem with Legacy Applications . 45
Using Attributes to Manage APDUs . 45
Returning Data from the Card . 47
Handling Incorrect Requested Lengths . 47

Card Reset Event . 47

Contents v
What Does a Reset Mean? . 47
Handling the Reset Event . 48

Card Services . 48
ContentManager . 48
SampleAccessManager . 49

Chapter 4 Card Explorer 51

Introduction . 51
Starting Card Explorer . 51
Connecting to the IDPrime .NET Card . 51
Toolbar . 53
Tab Layout . 54
Select Smartcard Reader Details . 55

Explorer Tab . 56
Services Tab . 58

Access Manager . 59
Card Element Properties . 60

Card Properties . 60
Folder/Directory and File Properties . 63

Public Key Tokens . 67
Identifying an Assembly . 67
Controlling Access to a File or Folder on the Card . 67

Managing Folders and Files . 68
Managing Folders . 68
Managing Files . 70

Chapter 5 Visual Studio .NET Integration 72

Managing the .NET Card Add-in . 72
How to Manage the Card Explorer Add-in . 72

Add-in Vs. Standalone Differences . 73
Templates . 74

Creating a Server Project . 74
Creating a Client Project . 74

Chapter 6 Getting Started 76

Using Templates to Make a Server Application . 76
Creating a New Solution . 76
Opening an Existing Solution . 77
Creating an IDPrime .NET Card Server Application . 77
Debugging . 80
Loading the Server onto the Card . 80
Starting a Service . 81
Deleting a Service . 81

Using Templates to Make a Client Application . 81
Creating a New Solution . 81
Opening an Existing Solution . 82
Creating a Client Application to Access a Service Running on an IDPrime .NET Card
82

Creating an On-Card Application without Templates . 85
Creating an Access Manager Project Using No On-Card Templates 85

Building a Project from the Command Line . 87
Compiling Your Application with csc . 87

Building with NAnt . 88

vi IDPrime .NET Smart Card Integration Guide
Compiling Your Application Using NAnt . 88
Running Your On-card Application with a Microsoft Debugger 88

Server-Side Code Changes . 88
Client-Side Code Changes . 89
Changes to the Project Settings . 90

Chapter 7 Code Samples 91

General Instructions . 91
SecureSession . 92

Description . 92
Running the Sample . 93
Code Extract . 93

APDUAttribute . 96
Description . 96
Execution . 96
Code Extract . 96

Transactions . 97
Description . 97
Execution . 97
Code Extract . 97

Chapter 8 Client-Side Components 98

SmartCard_Stub . 98
Referencing the ContentManager from Your Project . 98

SmartCard.Runtime . 99
Client Remoting Components . 99
CardAccessor Class . 99
AccessManagerClient Interface . 99

C++ Marshaller . 100
Why a C++ Marshaller? . 100
Where Can I Find the C++ Marshaller? . 100
Using the Marshaller . 100

PART II .NET MINIDRIVER API

Chapter 9 Introduction to Part 2 102

Chapter 10 Minidriver Interface V5/V6/V7 103

Chapter 11 Minidriver V5 Methods 105

Authentication Management Methods . 105
byte[] GetChallenge() . 105
void ExternalAuthenticate(byte[] response) . 105
void ExternalAuthenticateAM(byte[] response) . 105
void ChangeReferenceData(byte mode, byte role, byte[] oldPin, byte[] newPin, int
maxTries) . 106
void VerifyPin(byte role, byte[] oldPin) . 106
int GetTriesRemaining(byte role) . 106
void LogOut(byte role) . 107
bool IsAuthenticated(byte role) . 107
byte MaxPinRetryCounter {get;} . 107
bool AdminPersonalized {get;} . 107

Contents vii
bool UserPersonalized {get;} . 107
Containers & Crypto Management Methods . 108

void CreateCAPIContainer(byte ctrIndex, bool keyImport, byte keySpec, int
keySize, byte[] keyValue) . 108
void DeleteCAPIContainer(byte ctrIndex) . 108
byte[] GetCAPIContainer(byte ctrIndex) . 109
byte[] PrivateKeyDecrypt(byte ctrIndex, byte keyType, byte[] encryptedData) . 109

Information Management Methods . 110
int[] QueryFreeSpace() . 110
int[] QueryKeySizes() . 110

File System Management Methods . 110
void CreateFile(string path, byte[] acls, int initialSize) . 110
void CreateDirectory(string path, byte[] acls) . 111
void WriteFile(string path, byte[] data) . 111
byte[] ReadFile(string path, int maxBytesToRead) . 111
void DeleteFile(string path) . 112
void DeleteDirectory(string path) . 112
string[] GetFiles(string path) . 112
byte[] GetFileProperties(string path) . 112

Version Management Methods . 113
string Version {get;} . 113
void SetHostVersion(uint hostVersion) . 113

Chapter 12 Minidriver V6/V7 Methods 114

Authentication Management Methods . 114
Role Identifiers . 114
byte[] GetChallengeEx(byte role) . 114
byte[] AuthenticateEx(byte mode, byte role, byte[] pin) 114
void DeauthenticateEx(byte roles) . 116
void ChangeAuthenticatorEx(byte mode, byte oldRole, byte[] oldPin, byte newRole,
byte[] newPin, int maxTries) . 116

Properties Management Methods . 118
byte[] GetContainerProperty(byte ctrIndex, byte property, byte flags) 118
byte[] SetContainerProperty(byte ctrIndex, byte property, byte[] data, byte flags) .
119
byte[] GetCardProperty(byte property, byte flags) . 119
byte[] SetCardProperty(byte property, byte[] data, byte flags) 127

PART III APDU ENCODING

Chapter 13 APDU Encoding 137

Introduction . 137
APDU Format . 137
Argument Encoding . 138

Payload with length > FF . 139
MSCM Answer Interpretation . 140
The APDUs Exchange Flow . 140

Chapter 14 Hivecodes and Examples 141

Generic Answer Formation for .NET Card Services (Except MSCM) 141
Computing Hivecodes . 141

Namespace Hivecode . 141
Type Hivecode . 142

viii IDPrime .NET Smart Card Integration Guide
Method Hivecode . 142
MSCM Method Hivecodes . 142

Namespace Hivecodes . 144
Standard Type Hivecodes . 145
Exception Type Hivecodes . 145
Other Useful Type Hivecodes . 146
Other Useful Method Hivecodes . 146

APDUs Exchange Examples . 147
Get Challenge . 147
Get Response . 147
External Authenticate . 148
Log Out . 148

PART IV CONFIGURING PARAMETERS

Chapter 15 Configuring Parameters 150

Introduction . 150
Configurable Parameters (.NET Minidriver Assembly) . 150

Using SetCardProperty . 150
Using Installation Parameters . 155

Configurable Parameters (IDGo 5000 Bio) . 156

Appendix A Troubleshooting 159

Communication Problems . 159
The Easy Checklist . 159
Further Steps . 159

SSO Option Deactivation Problem . 160

Appendix B Marshaller Stub Sample 161

Terminology 170

Abbreviations . 170
Glossary . 171

References 173

Standards and Specifications . 173
Recommended Reading . 174
Useful Web Site Addresses . 174

Contents ix
List of Figures
Figure 1 - .NET Smart Card . 3
Figure 2 - IDPrime .NET On-Card and Off-Card Components 6
Figure 3 - The Smart Card CP User Interface . 7
Figure 4 - The Smart Card Verification CP User Interface . 8
Figure 5 - Microsoft Base CSP vs. Vendor-Specific Custom CSP 10
Figure 6 - .NET Card Explorer . 15
Figure 7 - Example of CardConfig.xml File . 16
Figure 8 - Libraries and Profiles Relationship . 19
Figure 9 - Client - Server Communication Using Channels and Ports 28
Figure 10 - Sample Server Code . 30
Figure 11 - Sample Client Code . 31
Figure 12 - .NET Remoting Architecture with Custom Sinks 32
Figure 13 - Properties Page for Assembly . 43
Figure 14 - Share With Dialog . 43
Figure 15 - Select Smart Card Reader dialog box . 52
Figure 16 - Log on to .NET Smart Card dialog box . 52
Figure 17 - Card Explorer Toolbar . 53
Figure 18 - Card Explorer – Explorer Tab . 54
Figure 19 - Card Explorer – Services Tab . 54
Figure 20 - Select Smartcard Reader Dialog Box . 55
Figure 21 - Card Explorer - Explorer Tab . 56
Figure 22 - Card Explorer – Services Tab . 58
Figure 23 - Card Explorer - Card Element Properties . 60
Figure 24 - Card Properties - General Tab . 61
Figure 25 - Card Properties - Advanced Tab . 62
Figure 26 - Folder Properties - General Tab . 63
Figure 27 - File Properties - Security Tab . 64
Figure 28 - Share With... Dialog Box . 65
Figure 29 - Modifying Permissions for a Public Key Token . 66
Figure 30 - Contextual Menu for Folders . 68
Figure 31 - The Open Dialog Box . 69
Figure 32 - Contextual Menu for Executable Files . 70
Figure 33 - Add-In Manager . 73
Figure 34 - New Project Dialog Box (netCard Server) . 74
Figure 35 - New Project Dialog Box (netCard Client Console) 75
Figure 36 - New Blank Solution (Server Applications) . 76
Figure 37 - New Project Dialog Box (netCard Server) . 77
Figure 38 - New Blank Solution (Server Applications) . 82
Figure 39 - New Project Dialog Box (netCard Client Console) 83
Figure 40 - New Project (No On-card Templates) . 86
Figure 41 - Advanced Build Settings (No On-card Templates) 86
Figure 42 - Add Reference (No On-card Templates) . 87
Figure 43 - Add Reference (SmartCard_Stub) . 98

List of Tables
Table 1 - The Smart Card Profile . 19
Table 2 - Card Explorer Toolbar Icons Descriptions . 53
Table 3 - Select Smartcard Reader Options . 55
Table 4 - Card Element Descriptions and Menu Options . 57
Table 5 - Card Services . 58
Table 6 - Menu Options . 59
Table 7 - Card Properties - General Tab Elements . 61

x IDPrime .NET Smart Card Integration Guide
Table 8 - Card Properties - Advanced Tab Elements . 62
Table 9 - Folder Properties - General Tab Elements . 63
Table 10 - File Properties - Security Tab Elements . 64
Table 11 - Permission Types for Assemblies . 66
Table 12 - Permission Types for Folders . 66
Table 13 - Permission Types for Non-Assembly Files . 66
Table 14 - Samples provided with the SDK . 91
Table 15 - Argument Types and Their Encoding . 138
Table 16 - Hivecodes for V5 . 143
Table 17 - Hivecodes for V6/V7 . 144
Table 18 - Microsoft Defined Minidriver Parameters . 150
Table 19 - Gemalto Proprietary Parameters . 153
Table 20 - Installation Parameters . 155
Table 21 - IDGo 5000 Bio Specific Configurable Parameters 156

Introduction
This document describes Gemalto’s IDPrime .NET smart cards, including their
architecture and general concepts about .NET technology. .NET Card technology
includes:

■ IDPrime .NET Card, a new post-issuance programmable smart card designed to
work with .NET applications

■ .NET Smart Card Framework, the class libraries and managed runtime
environment in which applications execute on a .NET card

■ Tools to manage and develop applications for IDPrime .NET cards

Who Should Read This Book
This guide is intended for system integrators who want to integrate .NET smart cards in
their systems and software engineers who want to write applications for IDPrime .NET
cards.

It is assumed that users are familiar with .NET Framework concepts, and focuses on
components and tools that are unique to the .NET Smart Card Framework. This
documentation does not repeat topics covered in the .NET Framework documentation,
which is available from the Microsoft .NET Framework Developer's Center.

The book is divided into three parts:

■ Part 1: .NET Technology describes the main concepts behind .NET and shows you
how to develop client and server applications.

■ Part 2: .NET Minidriver API lists all of the functions that are available at the API
level for IDPrime .NET cards.

■ Part 3: APDU Encoding provides information about how to code APDUs to call
methods.

Documentation
For documentation about IDPrime .NET Cards, please go to Gemalto Product Catalog
and consult the Download section at http://www.gemalto.com/products/dotnet_card/

Conventions
The following conventions are used in this document:

Windows Versions
Where this document refers to Windows 7 and 8, it is equally applicable to Windows
Server 2008 R2 and Windows Server 2012.

http://www.gemalto.com/products/dotnet_card
http://msdn.microsoft.com/en-us/netframework/default.aspx

xii IDPrime .NET Smart Card Integration Guide
Typographical Conventions
.NET Smart Cards documentation uses the following typographical conventions to
assist the reader of this document.

Convention Example Description

Bold Type myscript.dll Actual user input or screen output.

> Select File > Open Indicates a menu selection. In this example you are
instructed to select the “Open” option from the “File”
menu.

P
artI
.NET Card Technology

1

Smart Card Background

The IDPrime .NET Card is a new-generation smart card. This section provides some
background about smart cards in general.

Smart Card Basics
A smart card is a portable, tamper-resistant computer with a programmable data store.
A conventional smart card is the same size and shape as a plastic credit card, and it is
embedded with a silicon integrated circuit (IC) chip. The chip provides memory to store
data, a microprocessor to manipulate that data, and sometimes a cryptographic
coprocessor to perform complex calculations associated with cryptographic operations.

Smart cards that contain an IC chip are sometimes called chip cards to distinguish
them from cards that offer either memory storage only, or memory storage and non-
programmable logic. These memory cards store data efficiently, but cannot manipulate
that data because they do not contain a computing chip. Memory cards depend on
host-side applications to perform whatever processing is required on the data that they
store.

Chip cards are either fixed command set cards, which are programmed and
softmasked in read-only memory (ROM) during manufacturing to interact with security
infrastructure systems as portable, secure tokens; or post-issuance programmable
cards, which can be used for multiple purposes simultaneously (for example, a card
might be used as both as a security token and a rechargeable stored-value card), and
which can be upgraded or re-purposed while in the field, long after their initial
manufacture-time programming and softmasking.

The IDPrime .NET Card is a post-issuance programmable smart card. This new card is
based on technology from HiveMinded that is a subset of ECMA standards (language,
CLR, framework) for .NET. The IDPrime .NET Card technology was introduced by
Gemalto in 2002 as an on-card application programming solution for .NET
infrastructures. The IDPrime .NET Card technology offers support for multi-language
application programming using an appropriate subset of the .NET class libraries. This
subset has been tailored for smart card applications, and provides an optimized
runtime environment on the smart card to enable communication between card and
terminal using .NET remoting, ensure secure simultaneous execution of multiple
applications, and exploit many other .NET framework features.

Smart Card Background 3
Smart Card Hardware
Physically, a smart card is a component in a system that includes:

■ A smart card

■ A physical device or interface that enables data exchange between the smart card
and applications running on a host system

Smart Card
A conventional, contact-type smart card looks like a credit card with an embedded
integrated circuit chip. Its physical characteristics are defined by ISO 7816-1.

Here's an example of a conventional contact-type smart card.

Figure 1 - .NET Smart Card

The plastic media of the card may be printed to include a range of information,
including company logos and photos (for example, for scenarios in which the smart
card will also serve as an identification badge).

The working part of the smart card is the chip embedded at left center and includes:

■ Electrical contacts defined by ISO 7816-2.

■ The CPU (integrated circuit microprocessor). The chip in most smart cards is an 8-
or 16-bit microprocessor, usually using the Motorola 6805 or Intel 8051 instruction
set, with clock speeds up to 5 MHz. The chip in the IDPrime .NET card is a 32-bit
microprocessor.

■ A cryptographic coprocessor, which adds on-card capacity to perform the complex
calculations needed for cryptographic operations.

■ Three types of memory:

– Random Access Memory (RAM), volatile, mutable memory; content in RAM is
not preserved when power to the card is removed.

– Read-Only Memory (ROM), persistent, nonmutable memory into which the
fixed program of the card is loaded and stored during manufacturing. ROM
contains the card's operating system routines, permanent data, and permanent
user applications. Content in ROM is preserved when power to the card is
removed.

– Electrical Erasable Programmable Read-only Memory (EEPROM), persistent,
mutable memory used for data storage on the card. Content in EEPROM is
preserved when power to the card is removed.

4 IDPrime .NET Smart Card Integration Guide
Smart cards are also available in these alternative form factors.

Contactless Smart Cards
Contactless smart cards are chosen when physically inserting the card into a reader to
enable communication is impractical (for example, when the card is used for physical
access to a building). A contactless smart card communicates through electromagnetic
fields using an antenna that is built into the card; the microcircuit is sealed inside the
card and no contact points are visible on the face. Contactless smart cards are defined
by ISO-10536, parts 1,2,3, Identification Cards - Contactless Integrated Circuit(s)
Cards - Close-coupled Cards.

Smart cards used for multiple purposes are often hybrid or combination cards,
configured both for contactless uses (for example, for entrance to a building) and for
applications that require authentication of the user as well as recognition of the card
(for example, to access networked resources).

USB-capable Smart Cards
USB-capable smart cards incorporate the USB interface electronics normally found in a
smart card reader on the card itself. The alternate use of electrical contact points for
USB is defined by proposed amendments to the ISO 7816-2 standard.

Because USB-capable smart cards do not require a reader, an alternative form factor
card is available: a token format that is a cut-down version of the conventional format
smart card, preserving only the chip and minimal adjacent plastic card medium. The
cut-down card is inserted into a plastic dongle, a key-sized receptacle, which plugs
directly into a USB port on the host system.

Device/Interface
The most commonly deployed device to connect a smart card with a host system in
order to exchange data is a smart card reader. The reader is attached to the host
system using a serial, USB, or PC Card connection. The smart card is inserted into the
reader and when the card's contact points are correctly aligned, communication
between the smart card and the host system can be initiated.

A contactless smart card communicates with the host system using electromagnetic
fields using an antenna that is built into the card. Physical proximity to a card reader/
terminal that also includes an antenna triggers initiation of a communication protocol
that allows data exchange.

Because USB-capable smart cards incorporate the USB interface electronics normally
found in a smart card reader on the card itself, a USB-capable smart card interfaces
directly with the host system through a USB port. A conventional form factor USB-
capable card uses a special receptacle (resembling a standard smart card reader but
containing no electronics) plugged into a USB port, while a cut-down format USB-
capable card is inserted into a dongle that plugs directly into the USB port.

Smart Card Software
There are several different software components that operate on modern smart cards.

Operating System
The operating system is typically responsible for managing communication and
memory operations between the chip and any applications running on the smart card. If
the card supports Cryptography, the operating system may also provide an interface to
cryptographic hardware.

Smart Card Background 5
Applications
In order for a smart card to be useful, it must perform some operations that are
understood by a terminal or other external smart card reader. Smart card applications
range from a simple electronic purse to implementation of complex cryptographic
algorithms for digital security.

Traditionally, smart card applications were developed for a specific chip, and were
written in C by a specialized community of smart card developers. These applications
would be written to the chip at production time, and could not be changed after the card
was issued. This model of application development had some deficiencies. Moving
your application to a new type of chip meant rebuilding and possibly redesigning your
application for the new chip. Since applications needed to be written to the chip at
production time, the entire lifecycle of the smart card needed to be known in advance -
there would be no way to change the application in the field.

In the late 1990's, smart card application development changed radically. Smart card
companies released smart cards known as Java Cards, which contained a Java
interpreter. By writing applications in Java, smart card developers could insulate
themselves from the details of the specific chip hardware. Also, Java applications were
stored in non-volatile but erasable memory, so new applications could be loaded to the
card even after the card was in the hands of a user. Although the Java Card
represented a significant step forward in smart card development, it did not completely
isolate the developer from the protocols of the smart card. Developers were still
responsible for managing the communication between the card and the off-card
terminal.

The IDPrime .NET Card contains an IL interpreter that allows users to develop
applications for the smart card using the ECMA .NET standard. Applications can be
developed in any language that can be compiled to IL.

The following two software components are present only on smart cards that have
interpreters:

Runtime Environment
The runtime environment consists of two components. The first is an interpreter that is
responsible for running applications that are loaded to the card. The second
component is a collection of libraries that support applications. On a Java Card, these
libraries would contain the types and methods that are part of the Java Card API. On
the IDPrime .NET Card, these libraries contain a subset of the ECMA .NET libraries.

Loader
Since applications on cards with runtime environments can be loaded after the card is
produced, there must be a software component that is responsible for loading these
components to the card. The Loader on the IDPrime .NET Card is responsible for
several tasks:

■ Verifying that the IL being loaded to the card is safe to run.

■ Verifying that the assembly being loaded to the card is properly signed.

■ Ensuring that all types used by the assembly are already present on the card

The Loader is also responsible for removing applications from the card.

6 IDPrime .NET Smart Card Integration Guide
The IDPrime .NET Card Components
The architecture of the IDPrime .NET Solution relies on the Microsoft Base
Cryptographic Service Provider (Base CSP) component as follows:

■ Windows 7 and 8 (and Server 2008 R2 and Server 2012): The base CSP is V7 and
is integrated already in Windows 7 and 8.

■ Windows Vista (and Server 2008): The base CSP is V6. For Vista SP1, base CSP
V6 is already integrated in Vista. However for pre-SP1 base CSP V6 needs to be
downloaded via Windows Update.

■ Windows XP and Server 2003: The base CSP is V5. The base CSP V5 must be
downloaded via Windows Update.

The IDPrime .NET Solution consists of both on-card and off-card components, as
shown in “Figure 2”. These include the card module assembly that resides on the
IDPrime .NET smart card itself, and some libraries known as the minidriver .dll, that
must be installed in the “Windows System” directory on the client computer.

This section describes the architecture for Windows 7 and 8 and the differences that
exist for the Vista and XP versions.

The “Windows System” directory differs according to the version of Windows as
follows:

■ For Windows XP, Vista and 32-bit OS version of Windows 7 and 8 - All components
are installed in C:\Windows\system32

■ For 64-bit OS version of Windows 7 and 8 - The 64-bit components are installed in
C:\Windows\system32 and the 32-bit components are installed in C:\Windows\
SysWOW64.

Windows 7 and 8 (and Server 2008 R2 and Server 2012)
The components in Windows 7 and 8 are as follows:

Figure 2 - IDPrime .NET On-Card and Off-Card Components

Smart Card Background 7
On-Card Components
IDPrime .NET includes the following on-card components:

■ .NET Operating System

■ Card Module Assembly (Gemalto) – This is the “oncard” module for the
Minidriver. It is compliant with the Microsoft Minidriver v7 specification and paired
with the off-card minidriver dll library.

Off-Card Components
IDPrime .NET requires the following client libraries to be installed in the “Windows
System” directory (see previous page). Some implement a User Interface as shown in
Figures 3 and 4.

■ Base CSP v7: Minidriver based and integrated in Windows 7 and 8. This provides
the standard Windows 7 and 8 Credentials GUIs for user authentication.

■ Minidriver dll (Gemalto). This is compliant with the Microsoft Minidriver V7
specification and is installed automatically by the Windows 7 and 8 “plug-and-play”
feature when you insert a IDPrime .NET card in the reader.

■ Smart Card Credential Provider (CP). This provides:

– PKI management (done by the MS CP)

– Minidriver access (done by the MS CP)

It is the CP that manages the secure desktop functions such as smart card logon.
Its GUI is shown in “Figure 3”.

Figure 3 - The Smart Card CP User Interface

■ Smart Card Verification CP. This provides:

– PKI management (done by the MS CP)

– Minidriver access (done by the MS CP)

8 IDPrime .NET Smart Card Integration Guide
It is this CP that manages the user desktop functions. It manages the
authentication needed for applications such as SSL authentication (accessing
secure web sites) and signing emails.

Figure 4 - The Smart Card Verification CP User Interface

Gemalto has developed the IDGo 800 credential provider (CP) for Windows 7 and 8
which can manage up to 6 user PINs, each with its own PIN policy. The IDGo 800 CP
is an optional feature which, if installed, replaces the standard MS CPs (in “Figure 3”
and “Figure 4”).

Windows Vista and Server 2008
The components are exactly the same as for Windows 7 and 8. The only difference is
that the Microsoft Base CSP is V6 instead of V7. The Base CSP was integrated in Vista
from service pack 1. For the pre-SP1 version, it needs to be downloaded via Windows
Update.

Windows XP and Server 2003
The components are exactly the same as for Windows 7 and 8. The only difference is
that the Microsoft Base CSP is V5 instead of V7. The Base CSP is not integrated in
Windows XP but must be downloaded via Windows Update.

Cryptographic Application Programming Interface
(CAPI)

Microsoft’s Base CSP implements an API called CAPI. This interface is used in all
Microsoft tools and is native to all versions of Windows from XP onwards. CAPI
enables you to use the services provided by Base CSP without the need for sending
APDUs to the card. The Base CSP itself uses the .NET minidriver (axaltocm.dll), which
in turn communicates with the Gemalto on-card minidriver assembly (cardmodule.exe).
The .NET minidriver dll can be download from the Microsoft Update site:

http://catalog.update.microsoft.com/v7/site/
Search.aspx?q=gemalto%20minidriver%20net

CAPI is fully documented on the Microsoft Software Developer Network site http://
msdn.microsoft.com/ at the following link:

http://msdn.microsoft.com/en-us/library/aa380256%28VS.85%29.aspx

http://msdn.microsoft.com/en-us/
http://msdn.microsoft.com/en-us/
http://msdn.microsoft.com/en-us/library/aa380256%28VS.85%29.aspx
http://catalog.update.microsoft.com/v7/site/Search.aspx?q=gemalto%20minidriver%20net

Smart Card Background 9
You may also find the following link useful which lists various source codes and
describes their use:

http://msdn.microsoft.com/en-us/library/aa388162%28v=VS.85%29.aspx

Introducing the Windows Smart Card Framework
Architecture

In the past, smart card vendors made and maintained a monolithic Cryptographic
Service Provider (CSP) for their own smart cards. Vendors had to write complete,
custom, software CSPs to enable smart card scenarios for their cards.

The new Windows Smart Card Framework architecture is layered to separate the basic
required cryptography components at the top from the unique smart card hardware
interfaces at the bottom; the unique hardware-specific interface for a given smart card
receives the name of Minidriver (formerly called Card Module) and takes the form of a
Dynamic Link Library (dll). Minidrivers lever the common cryptographic components
now included in the Windows platform.

This new architecture has been implemented in the Crypto API Next Generation (CNG)
as part of the Microsoft Windows Vista OS, and is called the Microsoft Smart Card Key
Storage Provider (KSP).

The cryptography for smart cards has been implemented natively in Windows Vista, 7
and 8 and their corresponding Windows Server versions. For Windows XP and Server
2003, it is included in the Microsoft Base CSP (available as Microsoft Windows Update
KB909520.)

Base CSP and KSP provide the common software cryptographic portions, while the
MiniDriver of a given smart card compliant with this architecture simply plugs in to
provide access to the hardware and software of that particular smart card. “Figure 5”
illustrates the two Smart Card CSP architectures.

From an application developer perspective, the Base CSP, KSP and Minidriver
interfaces provide a common way to access smart card features, regardless of the card
type.

For users, the new architecture includes support for all preexistent smart card
scenarios, and it also provides new tools for the management of the Personal
Identification Number (PIN).

Note: The Microsoft Base Smart Card Cryptographic Service Provider should not be
confused with the “Microsoft Base Cryptographic Provider v1.0”, which is the default,
non-smart card software CSP in Windows.

http://support.microsoft.com/kb/909520
http://msdn.microsoft.com/en-us/library/aa388162%28v=VS.85%29.aspx

10 IDPrime .NET Smart Card Integration Guide
Figure 5 - Microsoft Base CSP vs. Vendor-Specific Custom CSP

Smart Card Standards and Specifications
The importance of developing globally-accepted standards for smart cards, smart card
applications, and related devices was recognized early in the smart card industry as
essential to broad acceptance of smart cards in all sectors. Some standards/
specifications offer definitions for the interfaces between parts of the whole system,
from operating system-level interaction to card communication, while other
specifications came out of specific industries and reflect their special interests and
requirements. More recently, security-related standards have become important,
especially as the participation of smart card-carried digital credentials in sensitive
secure systems has grown.

For details about the International Standards relating to .NET cards, please refer to
“References” on page 173.

(e.g., Smart Card Logon)

CAPI-based Crypto
Application

(e.g., Secure Email)

Microsoft Smart Card Base CSP
(BaseCSP.DLL)

WinSCard API
(WinSCard.DLL)

Smart Card Resource Manager

.NET Smart Card
Minidriver

(axaltocm.dll)

Other Base CSP compliant
Smart Card Minidriver

Vendor-Specific CSP

Any Cryptographic
Application
Using CAPI

Smart Card #1 Smart Card #3Gemalto .NET Smart Card

CAPI-based Crypto
Application

Smart Card Background 11
IDPrime .NET Smart Card Characteristics Summary
This section provides a summary of the technical characteristics.

Card Hardware Characteristics
■ Wide range of hybrid card options for combined physical and logical access control

■ Graphical personalization on request

■ Wide range of form factor: ID1 standard format, SIM-size format, card modules,
various USB token devices

■ High performance level based on 32-bit RISC secure chip (CC EAL 5+) with
cryptographic capability: On board key generation, true Random Number
Generator, RSA, DES/3DES, AES-256, Hash SHA1 / SHA256 / HMAC / MD5

■ 50 KB free Flash memory space for certificate and application loading

■ ISO 7816-1 to 3, T=0 compliant contact card interface with a maximum
communication speed of 223 Kbps (negotiable PPS)

■ Voltage range: 1.62 Vdc to 5.5 Vdc

Card Software Characteristics
■ Capability to implement new on board applications

■ SDK available to develop new on board applications

■ Electrical personalization on request: Parameters specified by Microsoft minidriver
specifications, and additional features from Gemalto (PIN policy)

■ Number of 1024 / 2048 bits certificates and keys: 15

■ FIP140-2 Level 3 in option

Middleware Architecture
■ Compliance with Microsoft Base CSP / Crypto API and Minidriver v7 specifications:

No proprietary middleware to install on the user PC

■ Single minidriver certified by Microsoft for all Windows OS and platforms
(axaltocm.dll)

■ Automatic download of the minidriver from the Microsoft Update site (Windows 7
and 8 and corresponing Windows Server versions)

■ Support of PKCS#11 crypto. architecture on Windows, Mac OS, Linux and UNIX-
like Operating Systems.

Main Functions Supported
■ Two Factors of Authentication with multi - PIN capability

■ PKI based on X509 / PKCS#12 / PFX digital certificates

■ OTP based on OATH event based specifications, with live and self provisioning
capabilities as option, EMV CAP version as option

■ Biometric authentication capability in option (IDGo 5000 Bio Solution)

12 IDPrime .NET Smart Card Integration Guide
Main Use Cases Supported
■ Logon

■ Change and Unblock PIN

■ Encryption of e-mails, files, directories, volumes, hard disks, USB memory tokens

■ Secure web and VPN access

Compliance with Operating Systems
■ High level of integration with Microsoft OS: Windows XP, Vista, Seven and

associated Server versions

■ Compliance with UNIX-like OS such as Linux and Solaris through PKCS#11
libraries

■ Compliance with Mac OS through PKCS#11 and Tokend libraries

Compliance with Microsoft Applications
■ Office

■ Exchange

■ Internet Explorer

■ EFS

■ Remote Desktop

■ Bit Locker and Bit Locker to Go

■ Direct Access, UAG and ForeFront

■ ILM / FIM Card Management System

■ Active Directory and Microsoft Certificates Services

Compliance with 3rd-Party Applications
■ Other Card Management Systems: Intercede, Opentrust, Passlogix, Gemalto

(DAS, vSEC:CMS)

For an updated list of IDPrime .NET cards compliant applications, please refer to the
IDPrime .NET pages http://www.gemalto.com/products/dotnet_card/.

http://www.gemalto.com/products/dotnet_card/

2

The IDPrime .NET Card

The IDPrime .NET Card is a post-issuance programmable smart card. This new card is
based on technology from HiveMinded that is a subset of ECMA standards (language,
CLR, framework) for .NET. The IDPrime .NET Card was introduced by Gemalto in
2002 as an on-card application programming solution for .NET infrastructures. The
IDPrime .NET Card technology offers support for multi-language application
programming using an appropriate subset of the .NET class libraries. This subset has
been tailored for smart card applications, and provides an optimized runtime
environment on the smart card to enable communication between the card and
terminal using .NET remoting, ensure secure simultaneous execution of multiple
applications, and exploit many other .NET framework features.

Background
The IDPrime .NET Card is a new type of post-issuance programmable smart card. First
demonstrated in 2002, the card is designed to work with .NET platform applications.

Why .NET on a Smart Card?
The .NET Card technology that encompasses the whole .NET offer (not only the
IDPrime .NET Card itself, but also the .NET Smart Card Framework and the IDPrime
.NET Card Add-in to Visual Studio .NET) offers key advantages over other
programmable smart card platforms, including:

■ A flexible on-card software architecture.

■ Movement of more processing to the card for enhanced security and portability.

■ Easy development of on-card applications, which is described in this section.

■ A managed runtime environment that is tailored for smart cards. The .NET Smart
Card Framework runtime environment (also called the .NET Smart Card
Framework common language runtime or CLR), is described in “Common
Language Runtime (CLR)” on page 20.

14 IDPrime .NET Smart Card Integration Guide
IDPrime .NET Card Application Development
IDPrime .NET Card application development mirrors .NET application development in
general, offering these benefits:

■ Applications can be written in any .NET-compliant programming language, which
means that developers can create applications using the language that they are
comfortable with and that best suits their business needs. Moreover, because they
are compiled to a common intermediary language, applications written in different
languages interact seamlessly within the .NET Smart Card Framework.

■ .NET Card technology includes application development tools that are fully
integrated into VisualStudio.NET, the standard development environment for .NET
applications.

■ Because .NET concepts are carried into the IDPrime .NET Card technology, the
learning curve for the growing developer base of .NET software engineers who
want to begin programming for IDPrime .NET cards is very short.

In addition, a key benefit to developing applications for the IDPrime .NET Cardis the
communication model, which enables developers to move away from the APDU-centric
communication architecture that is an underlying constraint on other programmable
smart card platforms. Instead, communication between the IDPrime .NET Card and the
host system uses a subset of the .NET Remoting feature, which is potentially capable
of supporting standard, widely-understood protocols (for example, XML, SOAP, HTTP),
as well as the traditional 7816-4 protocol APDU commands.

IDPrime .NET Card Characteristics
IDPrime .NET Card characteristics are enumerated in the CardConfig.xml file for the
card, which lists the card, runtime, and chip versions; supported cryptographic
algorithms; and available communication speeds. “Figure 7” on page 16 shows an
example listing of the CardConfig.xml file.

Card Contents
A new IDPrime .NET Card contains the .NET Smart Card Framework: the .NET Smart
Card Framework libraries and common language runtime (CLR). In addition to the
framework, the card contains a file system, a configuration file, and servers that enable
you to communicate with the card in order to do work.

As you work with the IDPrime .NET Card, you may add new assemblies or data files to
the card.

File System
When you connect to a new card the first time, the Card Explorer display shows that
the card contains a file system, a set of initial folders, and some initial files:

The IDPrime .NET Card 15
Figure 6 - .NET Card Explorer

The file system contains these base folders:

■ C:\Gemalto (Gemalto executables and libraries)

■ C:\Pub (public)

■ C:\System (contains the class libraries and any other libraries that are meant to be
accessible to all applications)

■ D:\Pub (public; pre-loaded with the CardConfig.xml file, which identifies aspects of
the card's capability to work with host-side applications)

New files and folders can be added to the file system, subject to user permissions.
Files and folders can also be deleted from the card.

CardConfig.xml File
The CardConfig.xml file is pre-loaded on the IDPrime .NET Card and is stored in the
D:\Pub directory. The CardConfig.xml file contains information that can identify aspects
of the IDPrime .NET Card's capability to work with host-side applications.

“Figure 7” shows an example of the contents of a CardConfig.xml file.

Note: While the CardConfig.xml file is found in the D:\pub directory, which is readable
by all users on the card, its contents can be changed only by the cards admin user.

16 IDPrime .NET Smart Card Integration Guide
Figure 7 - Example of CardConfig.xml File

<?xml version="1.0" encoding="utf-8"?>
<config xmlns="http://www.dotnetcard.com/schemas/2004/09/dotnetcard">
 <product name="Gemalto .NET Smart Card" version="1.1.0.542026" vendor="Gemalto">
 <hardware name="SLE88CFX4000P" version="1.0" vendor="Infineon">
 <serialnumber>00865141B050BA4A</serialnumber>
 </hardware>
 <manufacturing>
 <module>
 <siteID>1942 </siteID>
 <date>4323 </date>
 </module>
 <embedding>
 <siteID>0443 </siteID>
 <date>4323 </date>
 </embedding>
 <preperso>
 <siteID>0444 </siteID>
 <date>4323 </date>
 <equipmentID>00000001 </equipmentID>
 <appCode>S1005987 A1 </appCode>
 </preperso>
 <perso>
 <siteID>FFFF </siteID>
 <date>FFFF </date>
 <equipmentID>FFFFFFFF </equipmentID>
 <appCode>FFFFFFFFFFF </appCode>
 </perso>
 </manufacturing>
 <crypto>
 <algo name="DES" type="sym" min_key_length="64" max_key_length="64"
 keygen="true" />
 <algo name="TripleDES" type="sym" min_key_length="128" max_key_length="192"
 keygen="true" />
 <algo name="Rijndael" type="sym" min_key_length="128" max_key_length="256"
 keygen="true" />
 <algo name="RSA" type="asym" min_key_length="256" max_key_length="1024"
 keygen="true" />
 <algo name="SHA1" type="hash" />
 </crypto>
 <converter version="2.0.0.0"/>
 <protocol version="1.1.0.0" transport="APDU" type="T0" />
 <comm_speed>
 <item>9600</item>
 <item>19200</item>
 <item>38400</item>
 <item>11160</item>
 <item>115200</item>
 <item>223200</item>
 </comm_speed>
</config>

The IDPrime .NET Card 17
Access Manager Applications
There are two access manager applications that enable you to communicate with the
card. For more detailed descriptions, please refer to “Card Services” on page 48.

ContentManager
This is pre-loaded in the card (C:\System\SmartCard.dll). When a client application
queries the card to learn what services are available on the card, the Content
Management server responds by providing a list of available services.

SampleAccessManager
This is a sample from the SDK.

Additional Contents
As you develop applications for the card, you will install additional assemblies and data
files to the card.

Assemblies
Applications (.exe files) and libraries (.dll files) can be added to the card. While
execution of applications on the IDPrime .NET Card is not subject to user permissions,
managing applications and libraries (for example, adding new application files) on the
card is based on role-based access to the folders in which the application files are
found.

Default card permissions permit users with the Guest user role to add applications and
libraries to the \pub folders only. By default, the Admin user can add applications and
library files anywhere in the file system. Other users can add applications and libraries
as permitted by the user-code, path-access definition configured for each user on the
card at user creation time.

The rules that govern applications’ permissions to access other applications or libraries
are based on the public key token list of the requested resource.

Application and library files are uploaded to the card using the Card Explorer tool,
either as a stand-alone application or as a Visual Studio .NET Add-in. In the Card
Explorer, identify a folder on the card to which you have access, right-click the folder,
and select Add > New File. In the Open dialog box, navigate to the application or
library file on the host system that you want to add to the card, and click Open. The file
is copied to the selected folder on the card.

Data Files
Files that are not executables or libraries can be added to the card, subject to user
permissions. The primary limitation is the amount of available non-volatile memory
(EEPROM) on the card.

Generally, data files are stored on smart cards so that access to the data contained
within the files can be controlled.

Note: The Guest role applies only to SmartAccessManager and does not exist in
Microsoft Card Module (MSCM). MSCM has “Admin”, “User” and “Everyone” roles
only.

18 IDPrime .NET Smart Card Integration Guide
For example, key files associated with cryptographic services can be stored on the
IDPrime .NET Card. When the owner of the IDPrime .NET Card wants to perform an
operation that requires the key files (for example, to encrypt an e-mail message), he or
she attaches the card to the host system and provides authentication information (often
a PIN) in order to access the key files stored on the card.

Data files can also be stored on an IDPrime .NET Card for reasons unrelated to
cryptographic operations. Because data stored on an IDPrime .NET Card is not only
secure, it is also conveniently portable; a file might be loaded onto a card simply to
transport the file from one physical location to another.

Data files are added to specific folders within the D: file system, subject to user
permissions. Default card permissions permit users with the Guest user role to add
files to the D:\pub folder only. By default, the Admin user can add data files anywhere
in the D: file system. Other users can add data files as permitted by the user-data,
path-access definition configured for each user on the card at user creation time.

Data files can be uploaded to the card using the Card Explorer tool. In the Card
Explorer, identify a folder on the card to which you have access, right-click the folder,
and select Add > New File. In the Open dialog box, navigate to the file on the host
system that you want to add to the card, and click Open. The file is copied to the
selected folder on the card. Data files can also be copied to the card using the standard
Windows Explorer drag-and-drop mechanism.

Smart Card Profile
A profile is a set of libraries grouped together to provide a fixed level of functionality.
The Smart Card profile allows implementation of .NET on devices with small amounts
of both RAM and EEPROM, like smart cards. These devices are generally embedded,
must handle random power outages, and have no user interface.

In addition to the Smart Card profile, there are currently two other standard .NET
profiles:

■ Kernel profile, which is the minimal possible conforming implementation of the
Common Language Infrastructure (CLI).

■ Compact profile, which allows implementation on devices like mobile phones and
personal digital assistants (PDAs).

The graphic shows the relationship between the libraries and the three current .NET
profiles.

Note: Again, the “Guest” role applies only to SmartAccessManager.

The IDPrime .NET Card 19
Figure 8 - Libraries and Profiles Relationship

The Smart card profile (colored purple in the above figure) includes a strict subset of
the two .NET libraries that make up the Kernel profile, plus one new, smart card-
focused library as listed in the following table.

* The system.xml.dll is present only in older versions of Gemalto smart cards. It
wasremoved in OS version 2.1.3.1.

.NET Card Specifications
The core technology implemented in the .NET Smart Card Framework is based on the
HiveMinded Smartcard.NET reference implementation of the CLI, which conforms to
the European Computer Manufacturers Association (ECMA) Common Language
Infrastructure standard, ECMA-335.

IDPrime .NET Card Certifications
One of the versions of the IDPrime .NET card has been certified as FIPS140-2 Level 3.

Table 1 - The Smart Card Profile

File Description

mscorlib.dll Strict subset of the base class library

system.xml.dll* Strict subset of the base class library

SmartCard.dll Smart card-specific classes.

20 IDPrime .NET Smart Card Integration Guide
Common Language Runtime (CLR)
IDPrime .NET Card applications run as managed code within the .NET Smart Card
Framework common language runtime (CLR), which is also called the managed
runtime environment or execution environment. The .NET Smart Card Framework CLR
is a new implementation that is an ECMA-compliant compatible subset of the full .NET
CLR, and has been optimized for smart cards and other resource-constrained devices.
The common language runtime executes using a CPU-neutral instruction format.

Common Language Runtime (CLR) Responsibilities
Some responsibilities of the CLR are very similar to those of the standard .NET
Framework.

■ Application lifecycle management

Links the card-resident binary (on-card application) and manages execution of the
code throughout its lifecycle.

For more information about the application lifecycle implementation in the .NET Smart
Card Framework CLR, see “Application Lifecycle” on page 26.

■ Application domain management

The application domain model enables support for multiple applications running
simultaneously and securely on one IDPrime .NET Card. The safety and integrity of
each application is assured, because data in one application domain cannot directly
reference data in another domain.

For more information about the application domain implementation in the .NET Smart
Card Framework CLR, see “Application Domains” on page 25.

■ Garbage collection

Garbage collection eliminates the need for programmers to explicitly free memory
when an application no longer needs it; instead, a system thread periodically examines
all objects in the managed heap and removes any object to which all references have
disappeared. .NET Smart Card Framework implements a tailored garbage collection
mechanism that is well-suited to the resource constraints and particular needs of smart
cards.

For more information about the garbage collection implementation in the .NET Smart
Card Framework CLR, see “Garbage Collection” on page 34.

■ Remoting management

Provides an integrated foundation for secure communications between applications
using a subset of the .NET remoting architecture.

For more information about the remoting implementation in the .NET Smart Card
Framework CLR, see “Remoting” on page 27.

■ Exception handling

Provides standard exception handling.

Other responsibilities of the CLR are more closely related to the IDPrime .NET Card
implementation.

■ Evidence-based security implementation

The evidence-based security implementation ensures the integrity and authenticity of
IDPrime .NET Card assemblies during loading to the card and during execution of the
loaded applications.

For more information about the security implementation in the .NET Smart Card
Framework CLR, see “Application Security” on page 41.

The IDPrime .NET Card 21
■ Transaction management

The .NET Smart Card Framework supports a persistent transaction model that ensures
the integrity of data on the IDPrime .NET Card, despite frequent and sometimes
unpredictable physical removal of the card from the system or terminal with which it is
communicating. The transaction management system includes a new caching
technology that greatly increases the speed of writes to EEPROM, while still
maintaining data integrity.

For more information about the transaction management implementation in the .NET
Smart Card Framework CLR, see “Transactions” on page 37.

■ Code access security

Very similar to “Data Security”; that is, a public key token is required for an assembly to
access a dependent library. To enable a library to be shared with another assembly,
the corresponding public key token must be added as an attribute. Security policy is
determined by the Access Manager.

.NET Smart Card Framework Vs. .NET Framework
The .NET Smart Card Framework is very similar to the .NET Framework in most
substantive ways. These are the features and alternate implementations that are part
of the .NET Smart Card Framework that are not in the .NET framework:

■ A common language runtime (CLR) that contains the elements needed to manage
applications loaded onto an IDPrime .NET Card (see “Common Language Runtime
(CLR)” on page 20 for details).

■ A special upload file format optimized for smart card profile devices. This is an
alternative that produces a much smaller (by a factor of 4) binary file than a full
.NET assembly, better suited to the constraints of a smart card.

■ The .NET Smart Card Framework has been adapted to accommodate the smart
card memory model, in which an application is stored in persistent memory and
activated when an external application talks to it.

■ Floating point-based types are not supported.

■ Non-vector arrays (arrays with more than one dimension or with lower bounds
other than zero) are not supported in the .NET Smart Card Framework.

■ Reflection is not supported in the .NET Smart Card Framework.

■ The .NET Smart Card Framework supports server-side remoting only.

■ The varargs feature set (supports variable length argument lists and runtime-typed
pointers) is not supported in the .NET Smart Card Framework. However, the .NET
Smart Card Framework supports runtime-typed pointers.

■ Assembly scope names are ignored in the .NET Smart Card Framework, and types
are identified by their name alone. Two types with the same name in different
assemblies are considered to be identical. Only the method signature default
calling convention is supported.

■ There are no implicit types in the .NET Smart Card Framework CLR. All types are
explicitly defined in the metadata loaded into the CLR. In the presence of multiple
loaded assemblies, it is possible to have multiple definitions for types that might
normally be implicit. However, the CLR treats these multiple definitions as if there
was a single one; there is no way to distinguish if there is one definition or several.

■ Asynchronous calls are not supported in the .NET Smart Card Framework.

■ Only BeforeFieldInit type-initializers are supported the .NET Smart Card
Framework; all other initializers are considered to be errors.

22 IDPrime .NET Smart Card Integration Guide
■ Finalizers are not supported in the .NET Smart Card Framework.

■ New slot member overriding is not supported in the .NET Smart Card Framework.
The existing slot for member overriding is supported.

■ (Class Layout) Only autolayout of classes is supported in the .NET Smart Card
Framework. (The loader is free to lay out the class in any way it sees fit.)

■ The zero init flag is not supported in the .NET Smart Card Framework; local and
memory pools are never initialized to zero.

■ Locks and threads are not supported the in .NET Smart Card Framework;
therefore, any types associated with these constructs are not supported.

■ The security descriptor method state is not supported in the .NET Smart Card
Framework.

3

Concepts and Models

The .NET Smart Card Framework supports runtime features that are described in
“Chapter 2 - The IDPrime .NET Card”. This chapter, expands on those descriptions.

Assemblies
Compiled .NET software is typically distributed in the form of assemblies. Assemblies
perform a number of different functions in .NET, including containing the executable
code as well as defining type, security, and reference boundaries. Microsoft’s .NET
Framework Developer Center provides detailed documentation of various aspects of
.NET assemblies in . We assume that you are familiar with concepts related to
Microsoft .NET assemblies.

The IDPrime .NET Card uses assemblies in the same manner as a Microsoft .NET
environment. However, IDPrime .NET assemblies go through a conversion process in
order to optimize for space usage and to ensure that the assembly does not use types
that are unsupported on the card. This conversion process is hidden from the user, and
is performed automatically at compilation time when developing an application using
Visual Studio .NET.

Assemblies on the IDPrime .NET
There are a number of important points to keep in mind as you develop assemblies for
the IDPrime .NET:

■ Assemblies loaded to the card must be strong name signed (see “Glossary”).
Assemblies that are not strong name signed will be rejected by the smart card. The
manifest (see “Glossary”) of the signed assembly contains the public key of the key
pair used for the signature, which enables certain functionalities such as:

– It allows the smart card runtime to verify the integrity of an assembly being
loaded.

– The public key token associated with the assembly is used to grant or deny the
assembly access to certain file system resources, and to grant or deny inter-
application remoting calls.

■ Because assemblies and types on the card are considered unique after they are
signed, it is not possible to download more than one copy of an assembly to the
card, even if the assemblies are in different directories. It is, however, possible to
have two assemblies that contain the same types and namespaces, as long as the
two assemblies are not signed with the same key.

■ As a corollary to the above point, side-by-side execution on the card of different
versions of the same assembly is not supported.

http://msdn.microsoft.com/en-us/netframework/default.aspx
http://msdn.microsoft.com/en-us/netframework/default.aspx

24 IDPrime .NET Smart Card Integration Guide
■ An executable assembly can use the types defined in the library assembly even if
they do not reside in the same directory.

■ The IDPrime .NET Card has only limited support for Reflection. Only
System.Reflection.Assembly and System.Reflection.AssemblyName classes with
few methods are supported.

■ IDPrime .NET assemblies can register themselves for deletion. An assembly might
choose to do this, for example, when the application has expired (for example, a
coupon application) or when an application felt it was under attack. For details on
the self-deletion process, please refer to the online help (OLH) documentation in
Start > Programs > .NET Smartcard Framework SDK > X.X.XXX > Help >
.NETSmartcardFramework.

In the OLH, see System.Reflection > Assembly Class > Methods >
RegisterExecutingAssemblyDeletion Method.

Assembly Security
Security privileges of an assembly are controlled primarily by the public key token of
the assembly. One assembly can grant or deny access to its methods or data by
adding or removing the public key token of another assembly to or from its access
control lists. For more details see “Data Security” on page 44.

When a new assembly is developed and loaded in the .NET card, it is recommended
that this assembly does not use the card file system, or at least does not store any
critical data in the card file system. The critical data of the assembly will be better
protected if kept in the assembly’s private memory.

Loading Assemblies
Assemblies can be loaded to the card using the IDPrime .NET Card Explorer tool, an
NAnt Task, or an API exposed by the SmartCard.CardAccessor.CardAccessor class.

For example:

// This code loads an assembly from the D:\Projects directory of the
// local hard drive to the C:\Pub directory of the card, and then
// executes the assembly.
CardAccessor ca = new CardAccessor("Schlumberger Reflex USB v2");
ca.LoadAssembly(@"D:\Projects\MyAssembly.exe", @"C:\Pub");
ca.ExecuteAssembly(@"C:\Pub\MyAssembly.exe");

■ For more details on the CardAccessor API, see the IDPrime .NET Smart Card
Client API documentation in Start > Programs > .NET Smartcard Framework
SDK > X.X.XXX > Help > .NETSmartcardClientAPI.

In the OLH, see SmartCard.Accessor > CardAccessor Class.

Note: Where X.X.XXX is the SDK version number.

Note: Where X.X.XXX is the SDK version number.

Concepts and Models 25
Application Domains
The application domain model enables support for multiple applications running
simultaneously and securely on one .NET Card. In the .NET Smart Card Framework
runtime, every application executes in a secure, isolated execution area, which
enforces strict firewalls between applications and helps maintain data integrity. Data in
one domain cannot be accessed from any other domain. For more details about the
.NET application domain model, see Microsoft’s .NET Framework Developer Center.

Implementation
The .NET Smart Card Framework uses the type System.AppDomain to isolate running
instances of applications from one another by executing each instance in an isolated
environment. The safety and integrity of each application is assured, because data in
one application domain cannot directly reference data in another domain.

An application domain serves as the container for assemblies and types when loaded
into memory at runtime. It can be useful to think about an application domain as the
logical equivalent of a process in a Win32 application. Similar to processes, application
domains can be started and stopped independently.

Differences between IDPrime .NET Application Domains and
Standard .NET Application Domains

There are some key differences to keep in mind between application domains on the
IDPrime .NET card and normal .NET application domains. On the IDPrime .NET Card:

■ The ExecuteAssembly method of an AppDomain can only be executed from off the
card, either through the Card Explorer or through the
SmartCard.CardAccessor.CardAccessor API (see the IDPrime .NET Smart Card
Client API documentation in Start > Programs > .NET Smartcard Framework
SDK > X.X.XXX > Help > .NETSmartcardClientAPI. In the OLH, see
SmartCard.Accessor > CardAccessor Class.

■ An instance of AppDomain cannot be created by an application on the card.

■ If an application domain does not create a service, the application domain will be
garbage collected. For example, if application alpha.exe does not create a service,
the .exe file will remain on the card after execution, but there will be no running
application domain. If alpha.exe DOES create a service, the alpha.exe application
domain continues to run (even after the Main method exits) until the service is
deleted.

■ One application domain can communicate with another application domain
indirectly by using Activator.GetObject to obtain a reference to a remoted object in
the other application domain. For more details on this process, see the
documentation on Remoting.

■ An application domain can delete itself by using the static AppDomain.Unload
method. An application might be interested in unloading itself if it were an
application that were time- or usage-based (such as a coupon application), or if the
application were to reach an unrecoverable situation due to a security breach.

For example:

if (timesUsed > 10)
AppDomain.Unload(AppDomain.CurrentDomain);

http://msdn.microsoft.com/en-us/netframework/default.aspx

26 IDPrime .NET Smart Card Integration Guide
Application Lifecycle
An IDPrime .NET Card application is managed by the common language runtime
(CLR) throughout its lifecycle, beginning when it is converted to a binary format that
can be loaded onto the card.

Loading
An IDPrime .NET Card application can be created using any supported .NET
programming language (for example, C# or VisualBasic.NET). After the code is written,
it is compiled to .NETs Microsoft intermediary language (MSIL) format. This
compilation produces a standard .NET assembly.

Before it is loaded onto the card, the .NET assembly is converted from its standard
compiled form to the .NET Smart Card Framework's card-resident binary format, which
produces a much smaller (by a factor of 4) binary than a full .NET assembly. The
converted binary is called a card-resident binary. The converted binary must be strong-
name signed. This is the application file that is loaded onto the IDPrime .NET Card.

Installation
Each executable binary has a single entry point, a method of the following form:

public static int Main

After successfully loading and linking a new binary onto the card, the Main method is
called to execute an application-specific installation. The application must also register
its remote types with the .NET Smart Card Framework runtime to allow clients to
remote call methods on the newly installed application.

See “Remoting” on page 27 for more information about remoting.

Execution
The .NET Smart Card Framework implements a client/server model, in which the host
system or terminal is the client, and the IDPrime .NET Card is the server. Interaction is
always initiated by the client using a request/reply protocol.

Server applications running on the card are persistent; that is, the applications do not
terminate when power is turned off (when the card is removed from the reader or
terminal) or the card is reset. If one of these events occurs, when the card is
reconnected, the application's state does not change from its previous state.

See “Transactions” on page 37 for more information about transaction persistence.

Termination
A service on the card stops running when the service is unregistered. You can do this
both programmatically and by using the Card Explorer tool. When the service is
unregistered, the running instance is deleted, and its memory is reclaimed by the
garbage collector.

Unloading
After a service has been terminated, the binary containing that service can be removed
from the card. A loaded assembly that is still exposing a service cannot be unloaded.
The service must be terminated first.

Concepts and Models 27
Remoting
Remoting in the .NET Framework allows one operating system process or program to
communicate with another process running on the same computer, or on two
computers connected by a local network or the Internet.

.NET remoting provides an abstract approach to inter-process communication that
separates the remotable object from a specific client- or server-application domain and
from a specific mechanism of communication. As a result, it is flexible and easily
customizable.

The .NET Smart Card Framework extends standard .NET remoting and allows a
program executing on a PC to communicate with a process running on an IDPrime
.NET Card, and also allows a program running in one application domain to access
code or data in a process running in another application domain within the IDPrime
.NET Card. For more information about application domains, see “Application
Domains” on page 25.

Remoting in the .NET Smart Card Framework
Remoting works by having a server application expose an object to the external world
by registering the object as a service either through the
RemotingConfiguration.RegisterWellKnownServiceType method or
through the RemotingServices.Marshal method. In order for an object to be
registered as a service in .NET, that object must inherit from one of the marshalling
base classes. Although the .NET framework supports marshalling either by reference
or by value, the .NET Smart Card Framework supports only marshalling by reference
(that is, a class extending System.MarshalByRefObject). After the server has
registered the object, the object becomes available to clients that connect to the server.
When the client connects to the server, it creates a local proxy of the server object.
When the client wants to call a method on the remote object, the proxy object passes
the method call to the system-remoting mechanism, which is responsible for
marshalling the parameters and return value of the method. The current
implementation of the .NET Smart Card Framework does not support the marshalling
of classes. However, it does support the marshalling of all value types (including
structs) and supports both out and ref parameters. Types that can be marshalled
include the basic value types (byte, short, char, int, long, string, etc), structs, arrays of
basic types, and MemoryStreams.

The mechanism by which a client connects to the server is completely isolated from the
marshalled object. Conventional .NET remoting applications generally use either TCP
or HTTP as the transport protocol for applications. The .NET Smart Card Framework
uses ISO 7816-4 as a transportation protocol for communication. However, because
the transportation protocol is isolated from the service object, a developer does not
have to worry about the actual protocol of ISO 7816-4 communication.

All communication between the client and server takes place through a channel. The
.NET Smart Card Framework defines a new type of channel known as an
APDUChannel. This is referenced on the server (card) side through the
APDUServerChannel class and on the client (PC) side through the
APDUClientChannel class. The APDUChannel is responsible for encoding method
calls to a binary format and transporting them from the client to the server using the
ISO 7816-4 protocol.

28 IDPrime .NET Smart Card Integration Guide
Channels and Ports
In the .NET Framework, when you create a server (that is, a remotable class), you also
define and register one or more channels for the class and associate each channel with
a specific port. By registering a channel/port combination, you tell the .NET
infrastructure to listen to that port for messages intended for that channel. When a
message arrives, the framework routes it to the correct server object.

Figure 9 - Client - Server Communication Using Channels and Ports

“Figure 9” illustrates how the client and server communicate using channels and
named ports in the .NET Framework.

In the .NET Smart Card Framework, identifying a specific port to associate with a
channel is not always feasible, so a new mechanism for specifying the channel mode
has been created. See “Server Sample Code” on page 29 for details about creating a
.NET Smart Card Framework server that makes objects available for remoting.

In the .NET Framework, your client code also creates a channel associated with a
specific port, and then uses the Activator class to obtain a reference to the remote
object. You identify a remote object with the URL of the computer on which it is located,
the name of the remote class, and a URI that you assign.

In the .NET Smart Card Framework, you also use the Activator class to obtain a
reference to the remote object, using the new mechanism for specifying the channel
mode previously mentioned.

The APDUChannel supports URL's of the format:

"apdu://<name of the smart card reader>:<the port on which the service
is registered>/<the name of the service>"

For example:

"apdu://Gemalto Reflex USB v2:2222/CardService"

In addition to explicitly naming the reader to connect to, you can also use the reserved
names “promptDialog” and “selfDiscover”. The promptDialog mechanism displays a
dialog box and allows the user to select which reader to use. The selfDiscover
mechanism attempts to find the requested service by attempting to connect to any
.NET smart cards attached to the machine.

A simple .NET Smart Card Framework remoting example follows.

Concepts and Models 29
Example

Server Sample Code
First, create the server, which listens for calls from clients and connects them to the
remotable class. Here's what the code does:

1 Creates a new APDUServerChannel; in the sample code:

APDUServerChannel chan = new APDUServerChannel()

2 Registers the channel with the .NET Smart Card Framework infrastructure; in the
sample code:

ChannelServices.RegisterChannel(chan)

3 Registers the remotable class using a call to the
RemotingConfiguration.RegisterWellKnownServiceType() method; in
the sample code:

RemotingConfiguration.RegisterWellKnownServiceType(typeof(My
RemoteClass),"MyServiceURI”, WellKnownObjectMode.Singleton;

The arguments to this call are:

■ The first argument identifies the class being registered; in the sample code:

typeof(MyRemoteClass)

■ The second argument specifies the URI for the class; in the sample code:
“MyServiceURI”. The client will use this URI when calling the class.

■ The third argument specifies that if there are multiple calls to the class (from more
than one client), they will all be serviced by the same instance of the class, in the
sample code: WellKnownObjectMode.Singleton. The two available modes
are:

– SingleCall - Single Call objects service one and only one request coming in.
Single Call objects are useful in scenarios where the objects are required to do
a finite amount of work. Single Call objects are usually not required to store
state information, and they cannot hold state information between method calls.

– Singleton - Singleton objects service multiple clients and, hence, share data by
storing state information between client invocations. They are useful in cases in
which data needs to be shared explicitly between clients and also in which the
overhead of creating and maintaining objects is substantial.

The sample server code follows.

30 IDPrime .NET Smart Card Integration Guide
Figure 10 - Sample Server Code

Sample Client Code
Next, build the client that will call the remotable class. The program does the following:

1 Creates an APDUClientChannel.

2 Registers the channel with the .NET Smart Card Framework infrastructure.

3 Attempts to obtain a reference to the remote class by calling the
Activator.GetObject() method.

4 If the program cannot obtain a reference, it displays a message to the user.
Otherwise, it calls the remote object's SayHello() method and returns “Hello” +
name.

The Activator.GetObject() method accepts two arguments: The first is the type
of the remote class, which you can obtain by using the typeof() method with the class's
namespace and name as argument; the second argument has the following parts:

■ apdu:// - identifies the protocol; “apdu” is specified because the client and the
server are using an APDUChannel for communication.

■ <mode> - identifies the card connection mode to work around the fact that in the
.NET Smart Card context, the port through which the secure channel will work
cannot always be identified. In the sample code, the mode is prompt:unknown,
which means that the application will display a dialog box in which the user will be
required to select the reader in which the .NET Smart Card is inserted and active.

using System;
using System.Runtime.Remoting.Channels;
using SmartCard.Runtime.Remoting.Channels.APDU;

namespace RemotingDemoServer{

public class MyRemoteClass : MarshalByRefObject
{

public MyRemoteClas()
{
}

public String SayHello(string name)
{

return "Hello" + name;
}

public static void Main()
{

APDUServerChannel chan = new APDUServerChannel();
ChannelServices.RegisterChannel(chan);
RemotingConfiguration.RegisterWellKnownServiceType(typeof(MyRemoteClass),

 "MyServiceURI", WellKnownObjectMode.Singleton);
}

}
}

Concepts and Models 31
These are the available modes:

■ The URI associated with the remote class, which must match the URI established
by the server; in the sample code: MyServiceUri.

Here is the sample client code:

Figure 11 - Sample Client Code

Mode Description

prompt Application displays a Select Card Reader dialog box requiring
the user to select which reader to use.

<hard-coded reader> Specifies the reader that will be used, for example, Gemplus
USB Smart Card Reader 0. The exact string for each
reader that can be specified matches the reader options that
display in the Select Card Reader dialog box drop down list. This
mode is appropriate only if you know which reader will be used
with your application.

SelfDiscover The application searches for a card containing the service that the
application is requesting. If the application does not find a suitable
card, the Select Card Reader dialog box is displayed, and the
user must select the reader to use.

SelfDiscoverNoPrompt The application searches for a card containing the service that the
application is requesting. If the application does not find a suitable
card, an exception is thrown. This mode is primarily used for an
application that is not allowed to display dialog boxes, for
example, Windows services.

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.APDU;

using RemotingServerDemo;

namespace RemotingClientDemo
{

public class Client
{

public static int Main(string [] args)
{

APDUClientChannel chan = new APDUClientChannel();
ChannelServices.RegisteredChannel(chan);

MyRemoteClass obj = (MyRemoteClass)

Activator.GetObject(typeof(RemotingServerDemo.MyRemoteClass),
"apdu://prompt/MyServiceUri");

Console.WriteLine(obj.SayHello("John");

return 0;
}

}
}

32 IDPrime .NET Smart Card Integration Guide
Using Custom Sinks
As explained in “Remoting” on page 27, the Gemalto.NET card uses common .NET
remoting techniques to eliminate the need for explicit handling of APDU's. One exciting
feature of .NET remoting is that the remoting architecture can be extended by creating
custom sinks and sink providers that perform additional manipulation of remoting data
before it is sent to and from the card.

The following diagram shows the .NET remoting architecture with custom sinks sitting
between the formatter and transportation sinks on both the client and server.

Figure 12 - .NET Remoting Architecture with Custom Sinks

Why Make a Custom Sink?
If you do not care about the format of the data on the wire between the PC and the
card, there is no reason to create a custom sink. However, if you want to encrypt the
data between the card and PC or use proprietary compression algorithms on the
transmitted data, you can accomplish either of these tasks by creating custom sinks.

What Are the Limitations?
This version of the Gemalto.NET card supports only the use of MemoryStreams and
FileStreams within a custom sink. You cannot use either a CryptoStream or a
CustomStream as the basis for your sink manipulation. Attempting to use an
unsupported stream results in a NotSupportedException.

Designing a Custom Sink
When you design a custom sink, you must write a sink that behaves properly as part of
a chain of sinks. You will generally have to implement both a client- and server-sink
component. There are slightly different mechanisms for sink implementation depending
on whether the sink is a client sink or server sink.

When implementing a server sink, you must implement

■ System.Runtime.Remoting.Channels.IServerChannelSink. The key method of
the implementation is the ProcessMessage method, which is responsible for

Concepts and Models 33
implementing whatever transformations the sink is responsible for. A server sink
may perform either inbound transformations, outbound transformations, or both. It
is critical that the server sink also calls the next sink in the sink chain between
processing its inbound and outbound data. In addition, you must also implement...

■ System.Runtime.Remoting.Channels.IServerChannelSinkProvider. This class
is responsible for creating the sink object and for calling other providers to create
other sinks in the chain.

When implementing a client sink, you must implement

■ System.Runtime.Remoting.Channels.IClientChannelSink. Again, the key
method of the implementation is the ProcessMessage method. In this method,
you perform outbound processing before passing the message to the next sink in
the chain. When the message returns from the next sink, you perform inbound
processing. You must also implement...

■ System.Runtime.Remoting.Channels.IServerChannelSinkProvider. This class
is responsible for creating the sink object and for calling other providers to create
other sinks in the chain.

Using a Custom Sink
To make use of a custom sink, you must insert it into the sink chain both on the server
and on the client.

On the server side, you create your sink provider, and place it before the
APDUServerFormatterSinkProvider. Then, when you register a channel, you register
your sink provider as a parameter to the channel that you will be using.

For example:

// Create an encryption sink provider as the first sink in the chain
IServerChannelSinkProvider newProvider = new
EncryptionServerSinkProvider(properties, null);
newProvider.Next = new APDUServerFormatterSinkProvider();

// Register the channel the server will be listening to.
ChannelServices.RegisterChannel(new APDUServerChannel(newProvider,
0x7867));

On the server side, you create your sink provider and place it after the
APDUClientFormatterSinkProvider. Then, when you register a channel, you register
the APDUServerFormatterSinkProvider as the parameter to the channel that you will
be using.

// Create an encryption sink provider as the second sink in the chain
IClientChannelSinkProvider newProvider = new
APDUClientFormatterSinkProvider();
newProvider.Next = new EncryptionClientSinkProvider(properties);

// Register the communication channel
ChannelServices.RegisterChannel(new
APDUClientChannel("EncryptionSinkClient", newProvider));

34 IDPrime .NET Smart Card Integration Guide
Garbage Collection
The .NET Smart Card Framework Common Language Runtime (CLR) includes
automatic memory management using a mechanism called garbage collection.

Garbage Collection
The garbage collection feature eliminates the need for programmers to explicitly free
memory when an application no longer needs it; instead, the runtime manages
memory. All objects are instantiated while under the control of the managed runtime,
and the code is verifiably type-safe. The garbage collector then detects when there are
no longer any program references to an object, and deletes all objects that are no
longer required, freeing up memory previously allocated to those objects.

In the .NET Smart Card Framework runtime, garbage collection takes place in
response to the following events:

■ When the card is reset or powered up.

■ After execution of a remoting call in which either a new object was allocated, or an
uncaught exception is thrown. This is an important point to note, because if your
method does not allocate an object, the garbage collector will not be invoked. You
can force garbage collection in a method that does not allocate an object by using
the GCControlAttribute

Note that unlike garbage collection on other platforms, the .NET Smart Card
Framework garbage collection does not take place during execution of an application
or during allocation of objects or arrays, nor does garbage collection automatically
execute when the system runs out of memory. This means that if you are creating a
large group of objects and setting them to null, they will not be collected until the end of
the remoting call. Because of this constraint, you need to design your application in
such a way that it does not rely on memory being freed immediately after objects are
set to null or no longer referenced. Since a smart card is a resource-constrained
device, it is recommended that you should try to keep object creation and deletion to a
minimum. More object creation and deletion implies more garbage collection time,
which might impact the performance of the application.

Starting the Garbage Collector Manually
If your application accesses the card module assembly directly without accessing the
minidriver .dll on the client PC, the garbage collector starts automatically only when the
card is low on memory. This can slow processing considerably when performing a
reset. To avoid this, you can start the garbage collector manually by sending an APDU
with the ForceGarbageCollector method, listed in “Table 17 - Hivecodes for V6/
V7” on page 144.

The GCControlAttribute
Although the standard behavior of the garbage control system satisfies most
programming needs, there are times when you may wish to exercise more control over
the garbage collection process. The GCControlAttribute allows you to either force or
skip garbage collection after a remoting method.

For example:

[GCControl(GCControlMode.Force)]
void MyMethod()
{
 myMemberArray = null;
}

Note: This method is not available for the V5 version of the minidriver.

Concepts and Models 35
Normally, garbage collection would not be invoked after this method, since there is no
object allocation in the method. However, in this case, garbage collection will still be
invoked because we've used the GCAttribute with the GCControlMode.Force
parameter. This might be useful if myMemberArray was large, and we wanted this
memory to be available for the next remoting call.

Alternatively, we might want to skip garbage collection on a given method:

[GCControl(GCControlMode.Skip)]
void MyMethod()
{
 myMemberArray = new byte[3];
}

Normally the above method would invoke garbage collection since there has been an
object allocation. However, for performance reasons, a developer might want to skip
garbage collection for this method. Using GCControlMode.Skip causes the system to
skip garbage collection for this method.

File System
The IDPrime .NET Card contains a file system that is fully accessible within the card
from the standard .NET System.IO namespace. The file system provides developers a
mechanism to separate their data from their code. This allows developers to replace an
assembly with an updated version without losing data that might be associated with
that assembly.

Key Points about the IDPrime .NET File System
The IDPrime .NET file system does differ slightly from a conventional Windows file
system, and a developer should keep these differences in mind when designing an
application to run on the card.

■ Only one FileStream may be open on a given file at any time. This means that it is
important to release FileStreams after returning from remoting calls in order to
avoid blocking another FileStream object from accessing the file.

■ FileStreams are closed when the card is Reset or when it is removed from the
reader. It is never safe to assume that a FileStream is open and valid unless you
have created or opened the stream in the same remoting call.

■ In this version of the card, file names are case sensitive. For example, the file
readme.txt is not the same file as Readme.txt.

■ Security of the file system is enforced by both the card's operating system using
token-based security (see “Data Security” on page 44), and by the current Access
Manager using role-based security (see “Access Manager” on page 40).

Example
The following example shows on-card manipulation of the file system by attempting to
create a file in each of the subdirectories of D:\Pub

public void Example(string filename, byte [] data)
{
 string [] dirs = Directory.GetDirectories(@"D:\Pub");
 foreach (string directory in dirs)
 {
 FileStream fs = new FileStream(@"D:\Pub\" + directory + @"\" +
filename,

36 IDPrime .NET Smart Card Integration Guide
 FileMode.Create);
 fs.Write(data, 0, data.Length);
 fs.Close();
 }
}

Data Storage
The IDPrime .NET Card contains both persistent memory and volatile memory that are
used for data storage. The persistent memory acts as persistent storage for the card -
data persists in it even after the card is removed from a smart card reader. Volatile
memory is reset when the card loses power and cannot be used for persistent storage.

Data Stored in Persistent Memory
The persistent memory of the card is used for objects that are created by your
application. Any object created with a new keyword (whether this is done by the
developer or by an underlying software package) is created in persistent memory, and
will remain on the card until it is no longer referenced and has been garbage collected
(as described in “Garbage Collection” on page 34). In addition, any fields of an object
will be stored in persistent memory.

Data stored in the file system (see “File System” on page 35) is always stored in
persistent memory.

Data Stored in Volatile Memory
Local variables and parameters are stored in volatile memory.

The following code snippet illustrates which data is stored in persistent and volatile
memory:

// My class, when it exists, will always exist in persistent memory,
since it is created
// by an application via a call like "MyClass mc = new MyClass();"
class MyClass
{

// My fields will be in persistent memory
int f1;
short f2;

// In this method, neither of the parameters are stored in persistent
memory.

public void MyMethod(int param1, param2)
{
 // Neither of these local variables is in persistent memory
 int i = 0;
 int j = param1;

 // But the fields of the class do remain in persistent memory.

Even after
 // reset, f1 will retain its value
 int f1 = f1 + param2;
}

}

Concepts and Models 37
MemoryStreams
There exists a special case of objects that exist in both persistent and volatile memory.
The MemoryStream object itself is in persistent memory, but the data to which it is
pointing will exist in volatile memory. When a card is reset, any memory streams are
disposed, and the data to which those streams pointed is lost. Memory streams provide
a fast mechanism for manipulating arrays of byte data because the data is manipulated
in fast volatile memory rather than slower persistent memory.

Transactions
The .NET Smart Card Framework supports a persistent transaction model that ensures
the integrity of data on the IDPrime .NET Card, despite frequent and sometimes
unpredictable physical removal of the card from the system or terminal with which it is
communicating.

Why Transactions?
A smart card can be removed from a reader at unpredictable times. When the removal
occurs, the card will lose power immediately. This can be a serious problem if you were
in the middle of updating a sequence of object fields. For example, you might be
updating an address in an object. If you update the “street” field, but the card is
removed before you update the “city” field, you could end up with an address that is
completely incorrect. You need a way to ensure that either all of the updates take
place, or none of them do.

Card removals are not the only interruption that you might worry about. You might be
concerned that an exception could be thrown in the middle of some field updates that
could leave the card in an inconsistent state. In this case, you would want a mechanism
for rolling back any field updates to the original state.

How Transactions Work
Transactions work by ensuring that changes are not committed until the end of a
transaction. When you create a transaction, the card preserves the state of the object
before the transaction began, and will revert to this state at power up if the transaction
was unable to complete.

Any method (including the method initially called by the client) can be marked as a sub-
transaction by the addition of a special transaction attribute, Transaction. Also, any
method that is called by a method that is under transaction is also considered to be
under transaction.

Example
In this example, the Increment method is marked as a transaction using the
Transaction attribute.

[Transaction]
private void Increment ()
{
 counter++;
 if (counter > 10)
 {
 throw new BadCountException();
 }
}

Note: If the transaction method returns an uncaught exception, the transaction is not
committed, and objects and static data fields are returned to their previous state.

38 IDPrime .NET Smart Card Integration Guide
In the example, a counter is incremented, and if the counter is greater than 10, an
exception is thrown. The exception is not caught in this method. (It is intended to be
caught by the caller.) Because executing the method results in an uncaught exception,
the sub-transaction aborts and any changes made by this method are rolled back. The
result is that the value of the counter will never exceed 10.

Out-of-Transaction Objects
Although in general, you would like to roll back any modifications made to your card if
the operation is interrupted, there may be cases where you might want the method to
be under transaction, but for a particular field of an object to be “out of transaction”.
One motivation for this is the PIN class. You can imagine that the logic for a PIN class
might be for the caller to send PIN data to a method, and the method would then pass
the data to the PIN object. If the data does not match the PIN, the number of remaining
tries on the PIN is decreased, and the method returns. What we want to avoid is for an
attacker to be able to try a PIN, cut power to the card if it fails, and have the number of
remaining tries reset by a transaction.

To avoid this type of attack, the .NET framework provides an OutOfTransaction
attribute that can be applied to the fields of an object. Fields annotated by this attribute
are always considered to be “out of transaction”. That means that even if it is used
inside a method that is under transaction, the field will not be rolled back to its previous
state if the transaction is interrupted. The PIN class of the card is built using an
OutOfTransaction attribute.

Here's an example of the OutOfTransaction attribute in action:

using System;
using System.Diagnostics;

using SmartCard;
using SmartCard.Services;

public class MySecureCounter
{

 [OutOfTransaction]
 byte counter;

 public void Increase()
 {
 counter++;
 }

 public byte Value
 {
 get
 {
 return counter;
 }
 }
}

public class Test
{
 MySecureCounter secCount = new MySecureCounter()

 [Transaction]
 public void TestWithAbortedTransaction()

Concepts and Models 39
 {
 secCount.Increase();
 throw new Exception(); // abort
 }

 public void TestWithoutTransaction()
 {
 secCount.Increase();
 throw new Exception(); // abort
 }

 static void Main()
 {
 Test test = new Test();

 Debug.WriteLine("initial value = " test.secCount.Value);
 // expect test.secCount.Value = 0

 try
 {
 test.TestWithoutTransaction();
 }
 catch {}

 Debug.WriteLine("second value = " test.secCount.Value);
 // expect test.secCount.Value=1

 try
 {
 test.TestWithAbortedTransaction();
 }
 catch {}

 Debug.WriteLine("third value = " test.secCount.Value);
 // expect test.secCount.Value = 1

 }

}

Security
Security in the IDPrime .NET Card is generally discussed in one of three contexts:

■ Access Manager. The IDPrime .NET Card supports an extensible access
management system that allows developers and card deployers to define user
roles that can manage the card. These user roles control the deployment of new
assemblies to the card, as well as control over the .NET card file system.

■ Application Security. Applications deployed to the IDPrime .NET Card are always
signed assemblies. The public key token of these signed assemblies is used to
grant or deny privileges to a given application. For example, a library assembly
installed on the card might restrict unknown assemblies from using its API.

■ Data Security. Data for IDPrime .NET applications can be stored either internally
to the application or in the IDPrime .NET file system. Applications making use of
the file system can be assured that file-based data is secured by access control
lists associated with the public key tokens of on-card assemblies.

40 IDPrime .NET Smart Card Integration Guide
Access Manager
The resources such as files, directories, assemblies and their management in IDPrime
.NET Card are accessible using the ContentManager service (described later in the
documentation). Since these resources should only be accessed and managed by
authorized entities, mechanisms for authentication and authorization are required. It is
also envisioned that during the life cycle of the card, these mechanisms may need to
be changed. For example, a manufacturer of a smart card may trust a particular kind of
authentication mechanism that an issuer of the same smart card may think is
insufficient and weak. IDPrime .NET Card provides a flexible and extensible application
model such that any actor (provided it has authorization) in the lifecycle of the smart
card can implement its own authentication and authorization mechanisms. Some of the
authentication mechanisms for smart cards that are prevalent today are PINs, mutual
authentication using symmetric key algorithms, Biometric and so on.

The service that implements the above-mentioned authentication and authorization
specifics is called an AccessManager service. Like all other services, an
AccessManager service is a .NET Remoting application and is developed with the
requirement that it should extend an abstract class SmartCard.AccessManager of the
SmartCard.dll library.

The SmartCard.AccessManager class provides two abstract methods that should be
overridden by the extending class. These methods are:

■ ResourceAccessPolicyCheck(string resource,AccessType accessType) : This
method is invoked by the ContentManager service with the name of the resource
(such as a path of a file) and the type of resource as arguments. Implementation of
this method will decide whether to grant access or not. If access is not granted, an
AccessManager implementation throws an UnauthorizedAccessException.

■ AccessManagerRegistrationPolicyCheck(string objectUri,string
assemblyPath) : As mentioned above, the AccessManager can only be changed by
an authorized entity, and this method provides a way to determine if an
authenticated authority has the privileges to do so. This method is called when the
RegisterAccessManager method of ContentService is invoked. The name of
the service that is to be made the new AccessManager and the path to the
assembly containing the implementation class are passed as arguments. If the
current AccessManager does not entertain this request, an
UnauthorizedAccessException is thrown.

Since the above-mentioned methods of the AccessManager service are invoked
whenever a resource is accessed, it is recommended that implementors of the
AccessManager service should pay special attention to performance requirements and
memory consumption. Also, when designing an AccessManager service, the policies to
delegate control to a new AccessManager should be known in advance and be well
thought out.

The IDPrime .NET SDK also provides a flexible and extensible mechanism for client
applications to communicate with an AccessManager service on the card. An interface
called IAccessManagerClient in Gemalto.SmartCard.Runtime.dll is provided that
should be implemented and registered. A new AccessManager client application is
registered by adding the path to its assembly in the Config.xml file, which is located in
the “[INSTALLDIR]\Gemalto\NET SmartCard Framework SDK\vX.X.X.*\bin” directory.

The SmartCard.Acessor.CardAccessor class of the SmartCard.Runtime.dll
provides methods to determine the correct AccessManager client. Toolbar buttons of
the Card Explorer, provided in the SDK, change their behavior depending on the
AccessManager client registered.

Note: Where X.X.X is the SDK version number

Concepts and Models 41
The IDPrime .NET Card shipped in the SDK contains an AccessManager service
called SampleAccessManager, which uses username/password-based authentication
and controls the access to resources using a role-based security mechanism. It is
described in detail in “SampleAccessManager” on page 49.

Application Security
This section discusses issues related to ensuring the integrity and authenticity of card-
resident binaries, as well as ensuring the security of applications running on the card.

Ensuring the Integrity and Authenticity of Card-Resident Binaries
To ensure the integrity and authenticity of a binary that will be loaded to an IDPrime
.NET Card as a card-resident binary, converting a .NET assembly to a card-resident
binary is a two phase process:

1 The .NET Assembly is converted to an interim binary format. These are the
components of the interim binary that is produced by conversion:

– metadata

– code

– public key

2 A hash is computed (using the SHA1 algorithm) based on the interim binary's
components, and then the hash is encrypted using the private key associated with
the interim binary's public key pair. The encrypted hash (which is also called the
signature) is stored as part of the binary. The components of the binary after
addition of the signature are:

– metadata

– code

– public key

– signature

A binary that includes a signature is ready for upload to the IDPrime .NET Card, where
it becomes a card-resident binary. The binary can be loaded using the CardManager
service, the Card Explorer, or the CardAccessor library, which provides a wrapper for
CM methods.

During upload of the binary to the card, each block of data is checked for accuracy
(unrelated to integrity/authenticity). If all blocks are loaded successfully, a hash is
computed using the public key, which has been extracted from the binary on the card.
The encrypted hash (signature) loaded onto the card is then decrypted, also using the
public key.

If the decrypted signature matches the hash computed on the card using the public
key, both the integrity and authenticity of the data are proven. Integrity is demonstrated
because the hash values match. Authenticity is demonstrated because the public key
can only be in the .binary loaded onto the card if the private key was known.

If the values do not match, the data integrity and authenticity of the binary cannot be
assured, and a BadImageFormatException exception is thrown. (The binary is not
loaded to the card.)

Note: The metadata for a card-resident binary consists only of name and version
information for the binary (in contrast to the metadata in a full .NET assembly, which
includes a much larger set of data describing the assembly).

42 IDPrime .NET Smart Card Integration Guide
Matching the Card-Resident Binary to the Original .NET Assembly
A pre-conversion .NET assembly consists of these components:

– metadata

– code

– public key

– signature

When the original .NET assembly is converted to the card-resident binary format, the
resulting binary file (.bin) is stored in the original assembly as a resource. After the .bin
file is embedded, the original .NET assembly is re-signed so that the data in the .bin file
is accounted for in the original .NET assembly's encrypted hash (signature).

Thus a post-conversion .NET assembly consists of these components:

– metadata

– code

– public key

– .bin resource

– new signature

The .NET assembly hash is stored in the converted binary and gets loaded onto the
card along with the rest of the data in the card-resident binary. If needed, this hash
value can be used to match the card-resident binary to the original .NET assembly on
the desktop.

Ensuring Code Security
Code security is addressed by the following mechanisms:

■ Requiring that all assemblies must be signed.

■ If an assembly (A1) needs to access another assembly (A2), either both
assemblies must have the same public key token, or assembly A1, whose public
key token is PBKT1, must be granted access to assembly A2 by adding public key
token PBKT1 as an attribute on assembly A2.

A new public key token can be added as an attribute from the properties page for
the assembly as follows:

1 Open the properties page for assembly A2 and click the Security tab (as shown in
“Figure 13”).

Concepts and Models 43
Figure 13 - Properties Page for Assembly

2 Click Add to open the Share With dialog box (“Figure 14”).

Figure 14 - Share With Dialog

44 IDPrime .NET Smart Card Integration Guide
3 Do one of the following:

– If the A1 assembly is in the card, choose From On Card Assembly, select the
A1 assembly from the list

– If the A1 assembly is stored on the computer, choose From Off Card
Assembly, click Browse and navigate to the assembly on the computer.

– Click New Public Key Token by typing or pasting the public key token for
assembly A1.

4 In Permissions, check the boxes that correspond to the access rights you want to
grant to the public key token attribute.

Access rules enforced by the current Access Manager define who is able to add
public key token attributes to an assembly.

5 Click OK.

If an assembly does not have any public key token (PBTK) attributes, it is considered to
be public; that is, the assembly is accessible by all other assemblies. For example,
assemblies located in C:\System (including mscorlib.dll and SmartCard.dll) are
accessible to all assemblies. You can confirm that an assembly is public by viewing its
properties; click the Security tab and verify that the Public Key Tokens list is empty.

Data Security
The IDPrime .NET card supports two different types of data storage on the card. In the
first type of storage, data is stored as objects in the Application Domain of its host
assembly. (See “Application Domains” on page 25.) In the second type of storage, data
is stored in the IDPrime .NET File System. (See “File System” on page 35.)

Data Storage in Application Domains
When data is stored in an application domain (AD), it resides in a strongly typed object
(see “Glossary”), and is protected from misuse by the fact that ADs cannot
communicate directly with each other. There is a strict firewall between different ADs.
In order for two ADs to communicate with each other, one must export an interface,
and the calling application must be trusted (see “Application Security” on page 41). The
AD hosting data can add further protection to the data by simply not releasing it unless
certain security criteria (such as the presentation of a key or PIN) are met. Although the
security of this type of data storage is strong, it has certain drawbacks. It ties the data
to the AD (remove the AD and you lose your data). The fact that another application
cannot access data directly is an advantage from a security perspective, but it can be a
disadvantage from a performance perspective.

Data Storage in the File System
As an alternative to using the AD to protect data, an application can choose to store
data in the card's file system. Access to the file system on the card is identical to
accessing the file system in a normal .NET environment. For example, we can use
FileStream to create an object:

FileStream fs = new FileStream(@"D:\Pub\MyFile.txt", FileMode.Create);
fs.Write(someDataInAByteArray, 0, 12);
fs.Close();

This mechanism of data storage has two key advantages.

■ It separates an application from the data it uses. This allows you to delete an
application and install a new version without having to worry about otherwise
preserving data.

Concepts and Models 45
■ It simplifies sharing data. For example, one application might have information
about the shipping address of the card owner. If this were stored in a file that was
accessible to other applications, the same shipping address would be accessible to
those applications.

The fact that the file system can be used for data sharing requires that there be policies
in place to enforce ownership and sharing privileges on files in the file system.

Data files in the IDPrime .NET card are protected using a public key token system that
is very similar to that used by applications (see “Application Security” on page 41).
Each file has two sets of privileges associated with it:

■ The public privileges define what any application can do to the file. For example, a
file could have a public Read privilege, which would allow any application to read
from the file.

■ The private privileges are assigned to individual public key tokens. For example, a
file might assign read privileges to a particular public key token that is trusted by
the application.

By default, when a file is created using the System.IO namespace, no public privileges
are assigned to that file, and the public key token of the assembly that created the file is
the only public key token in the private privileges set. The creating assembly has full
privileges to control the file. If an assembly with a public key token that is not in the
private privileges set attempts to perform an operation that is forbidden in the public
set, an UnauthorizedAccessException is thrown.

Supporting Legacy Infrastructure
The primary mechanism for communicating with applications on the IDPrime .NET
Card is to use the APDUChannel remoting mechanism provided as part of the .NET
card framework. However, there are times when using remoting is not suitable. For
example, you might be in a situation where your card must work in a non-.NET
environment, or must work with existing applications that cannot be ported to the
APDUChannel remoting architecture. This section explains how to support legacy
(APDU-based) applications using your IDPrime .NET Card.

Who Should Read This Section?
This section is targeted at people who need to support legacy applications on the card.
Unless you have a really good reason for doing this, Gemalto strongly recommends
using the .NET remoting architecture. If you absolutely must implement an APDU-
based application on the card, this section is written for you. However, we assume that
you have a basic understanding of the APDU protocol.

The Problem with Legacy Applications
Legacy applications expect to communicate with the card using a series of APDUs.
Often, the APDUs will be handled by the card based on the different components of the
APDU header. For a full description of the APDU protocol, see the ISO 7816
specifications. By default, applications on the IDPrime .NET Card expect that their
methods will be invoked via the .NET remoting architecture. When the remoting
architecture is active, all APDUs are processed by the APDUChannel as remoting
calls.

Using Attributes to Manage APDUs
The IDPrime .NET Card uses .NET attributes to map APDUs to methods on the card.
This is best illustrated by example:

46 IDPrime .NET Smart Card Integration Guide
[APDUException(typeof(CryptographicException), (short)0x6512)]
[APDUException(null, (short)0x6514)]
[APDU("B0300000",Mask = "00000F0F")]
public void GenerateKeyPair([APDUParam(APDUHeader.P1)]byte
privateKeyIndex,
 [APDUParam(APDUHeader.P2)]byte publicKeyIndex, byte algID, ushort
keySize, byte []
 Data)
{

...
}

Broadly, here's what this does: It defines a method GenerateKeyPair that returns no
data and in the normal remoting world would be expecting as arguments 3 bytes,
followed by an unsigned short, followed by a byte array. If you wanted to invoke this
method using remoting, you'd use:

myRemoteObject.GenerateKeyPair(priIndex, pubIndex, algId, keySize,
bData);

However, if instead of using remoting, you send an APDU to the card that matches the
APDU attribute, the following happens:

1 The P1 byte from the APDU is packed into the first argument.

2 The P2 byte from the APDU is packed into the second argument.

3 The first DATA byte is packed into algID.

4 The second two data bytes are packed into keySize.

5 The remainder of the DATA from the APDU is packed into the Data array.

6 If a CryptographicException is thrown by the method, it will be translated to an SW
of 0x6512.

7 If any other exception is thrown by the method, it will be translated to an SW of
0x6514.

What does it mean for an APDU to match the APDUattribute? Basically the check is:

if ((incomingAPDU & (~Mask)) == APDUAttribute)

So, in our example, any APDU of the form B0300x0x would be dispatched to this
method.

Here are the other rules you need to know for writing APDU's from your IDPrime .NET
application:

■ Your method must either return void, byte[] or MemoryStream

■ Your method must take as parameters only basic numeric types (byte, short, int,
long or their unsigned variants) or a byte array.

■ If your method takes a byte array as a parameter, the byte array must be the last
parameter, and there can only be one array parameter.

■ The URI of the application that you marshal when you install the application should
be a string containing the hexadecimal AID (e.g. private const string
REMOTE_OBJECT_URI = “A00000000101”;. By doing this, your application will
respond to standard select APDUs. In the case of the above sample, 00 A4 04 00
06 A0 00 00 00 01 01 would select the assembly.

Additionally, you can define a method to be called anytime that your application is
selected using APDU's.

[APDU("SELECT")]
public void Select(MemoryStream AID)

Concepts and Models 47
{
 // Do anything you want to do when selected here...
}

Returning Data from the Card
The card automatically handles the sending of appropriate 61 XX commands when it
wants to send data to the terminal. For example, if you have a method defined as:

[APDU("00B20000")]
public byte [] GetAllergyData(int AllergyNumber)
{

byte [] b = new byte[12];

// pretend that I've filled b with data about the allergy

return b;
}

When the card receives “00 B2 00 00 04 12 34 56 78", it will respond with “61 0C”, and
it will be the responsibility of the terminal to send a GetResponse to retrieve the data.

Handling Incorrect Requested Lengths
Situations will occur when a client asks the card for an amount of data that exceeds the
available data from a given method. This would occur, for example, when you ask for
20 bytes back from a method that returns a 10-byte array. You can use the
OnInvalidLe field of the APDUAttribute class to specify the behavior. This field can be
set to either APDUInvalidLeAcknowledgeMode.Reject, in which case the card
returns a 0x6700 status word, or to APDUInvalidLeAcknowledgeMode.IndicateLa,
in which case the card returns a 0x6C[La], where [La] indicates the number of available
bytes.

Card Reset Event
Although the IDPrime .NET SDK is designed to insulate developers from smart card
operational aspects, it is important to understand the concept of a reset on a smart
card, because this is an event that takes place every time a card is inserted in a reader.
External applications, and even the Windows operating system, can cause a smart
card to reset itself. For example, when a card is used with the Base Smart Card
Cryptographic Service Provider, the Base CSP may reset the card after use in order to
prevent another application from using the keys stored on the card without presenting a
PIN.

What Does a Reset Mean?
A reset on an IDPrime .NET Card causes several things to happen:

■ Garbage collection is invoked (described in “Garbage Collection” on page 34).

■ All open FileStream objects are closed. Further attempts to use these objects result
in an ObjectDisposedException being thrown.

■ All open MemoryStream objects are closed. MemoryStreams also throw an
ObjectDisposedException if you attempt to use them after a reset.

■ A CardReset event is triggered. An application can listen for this event to perform
any operations that might be necessary to reset the card. For example, you might
wish to reset data or fields that might be specific to your session.

http://support.microsoft.com/kb/909520
http://support.microsoft.com/kb/909520

48 IDPrime .NET Smart Card Integration Guide
Handling the Reset Event
The SmartCard library supplied with the SDK contains a SmartCard.SystemEvents
class that contains a SessionEnded event. If you want to be notified when the card is
reset, you simply add a delegate to the SessionEnded event.

For example:

class MyClass

{
 int iSessionCounter;
 public MyClass()
 {
 iSessionCounter = 0;
 SystemEvents.SessionEnded += new
SessionEndedEventHandler(OnCardReset);
 }

 public void RemotingMethodThatGetsCalled()
 {
 iSessionCounter++;
 }

 private void OnCardReset(object sender, SessionEndedEventArgs e)
 {
 iSessionCounter = 0;
 }
}

In the preceding example, the iSessionCounter is reset back to zero every time the
card is reset.

Card Services
This sections describes two services that help you communicate with the card.

ContentManager
The Content Manager service is installed on the card during personalization at the
factory. This service allows you to manage the lifecycle of the card by managing the file
system, setting card properties, and loading/unloading assemblies. The Content
Manager can be used either from on-card applications or off-card applications. To
access the Content Manager from off-card applications, you can obtain a proxy to the
Content Manager using standard remoting techniques, or you can use the off-card
SmartCard.CardAccessor library, which provides an interface to the on-card
ContentManager application and does not require the calling application to use
remoting directly.

Features
Broadly, the ContentManager application allows you to do the following:

■ Manage files on the card. This includes creating/deleting both directories and files,
getting/setting properties associated with files, and managing the security settings
associated with a given file or directory.

■ Manage assemblies on the card. The API provides support for loading applications,
executing assemblies, and unregistering services.

Concepts and Models 49
■ Manage card properties. For example, you can set the chip speed, the
communication speed, or the historical parts of the ATR. In addition, you can read
information about the version of the card, free memory available, etc.

Examples
Here's an example of using the ContentManager from an off-card application:

ContentManager cm = (ContentManager)Activator.GetObject(typeof
(ContentManager),"apdu://selfDiscover/ContentManager");
int speed = cm.ChipSpeed;

Here's an example of using the CardManager from an on-card application:

ContentManager cm = (ContentManager)Activator.GetObject(typeof
(ContentManager),"ContentManager");
int speed = cm.ChipSpeed;

Note the close similarities. The on-card application is using the same remoting
mechanisms that the off-card application is using.

More Information
■ For more information about the ContentManager API, see the online help (OLH)

documentation in Start > Programs > .NET Smartcard Framework SDK >
X.X.XXX > Help > .NETSmartcardFramework.

In the OLH, see Smart Card > ContentManager Class.

SampleAccessManager
The SampleAccessManager service extends the SmartCard.AccessManager class.
The Access Manager is responsible for controlling access to system resources such as
the file system and card properties.

Features
You can use the SampleAccessManager application to log on to the card as a user.
This service is responsible for granting or denying privileges to system resources. You
can replace the SampleAccessManager application with a different service that
extends SmartCard.AccessManager. For more details about the AccessManager
model, see “Access Manager” on page 40.

SampleAccessManager Roles
SampleAccessManager defines four categories of roles that can be associated with the
card:

■ Administrator has full permissions to modify the card and to control other user
roles.

■ Power User is defined as a mid-level user with more permissions than a standard
user.

■ User is a standard user.

■ Guest is a guest role with limited privileges.

From within the SampleAccessManager client tools, you can create new users and
assign them to one of these roles.

Note: Where X.X.XXX is the SDK version number.

50 IDPrime .NET Smart Card Integration Guide
SampleAccessManager Rules
SampleAccessManager manages access to the file system based on privileges
assigned to a given user or role. Individual user accounts are assigned separate code
and data directories in which to install their applications. All users have access to the
C:\Pub and D:\Pub directories. A guest user may access only the C:\Pub and D:\Pub
partitions of the card. An administrator is granted full access to the card.

Users can create and delete roles that have lower privileges. For example, the
Administrator can create Power Users and Users, but a Power User would only be
able to create a User account. Also note that a user cannot create a user that has
broader file access privileges than the creating user account. For example, if a Power
User had access to the C:\Users\students directory, they could not create a simple
User who had access to the C:\ or C:\User directories.

In the current implementation, there is only one Administrator account and one Guest
account.

SampleAccessManager Client Information
A SampleAccessManager client is also installed as part of the SDK. The client is
responsible for producing all of the dialog boxes associated with user logon and user
management.

4

Card Explorer

The Card Explorer is the tool available to manage IDPrime .NET Cards. It is part of the
IDPrime .NET SDK. The SDK is available free of charge from the Gemalto.com .NET
pages @ http://www.gemalto.com/products/dotnet_card/resources/
development.html?toggler=0

There are two versions of the SDK available: v2.3 for Visual Studio 2010, and v2.2.181
for all the other VS versions.

Introduction
The Card Explorer is a tool (also available as an add-in to Visual Studio .NET) that
simplifies IDPrime .NET Card management, including viewing a card's content;
managing the card's assemblies, data files, and directories; managing authentication
according to the requirements of the current Access Manager; and creating and
deleting services on the card.

Starting Card Explorer
If the CardExplorer component was selected during installation, you can start the Card
Explorer tool from the Windows Start menu. Choose Programs > .NET Smart Card
Framework SDK > X.X.X > CardExplorer.

If the CardExplorer AddIn in VS.NET component was selected during installation,
when Visual Studio.NET is launched, the Card Explorer is automatically started unless
you have changed the default Startup setting (see “Managing the .NET Card Add-in” on
page 72).

Connecting to the IDPrime .NET Card
These are the steps to connect to the IDPrime .NET Card and authenticate to the card:

1 Insert the IDPrime .NET Card into the smart card reader.

2 In the Card Explorer toolbar, click the Connect icon to open the Select Smart
Card Reader dialog box.

Note: X.X.X is the version of SDK.

http://www.gemalto.com/products/dotnet_card/resources/development.html?toggler=0
http://www.gemalto.com/products/dotnet_card/resources/development.html?toggler=0

52 IDPrime .NET Smart Card Integration Guide
Figure 15 - Select Smart Card Reader dialog box

3 In Reader name, select the name of the reader in which the IDPrime .NET Card is
inserted. If necessary, click Details and select other options (see “Select
Smartcard Reader Details” on page 55). Click OK. In the Card Explorer toolbar, the
Log on icon becomes available.

4 Click the Log on icon to invoke the authentication method of the current
Access Manager on the card. The authentication method might require the user to
provide some sort of input (for example, a user name and password, or a biometric
like a fingerprint) using a client application. If this is the case, an appropriate dialog
box or other graphical user interface is displayed after you click the Log on icon.

For example, if the authentication method for the current Access Manager requires
the user to specify a user name and password to access the card, clicking the Log
on icon might result in display of a dialog box similar to the following one to gather
and submit the required information.

Figure 16 - Log on to .NET Smart Card dialog box

If authentication is successful according to the requirements of the current Access
Manager, the card contents are displayed in the Explorer tab of the Card Explorer.

Cards with the Access Manager Admin Key
If the card has been configured with the Access Manager Admin Key, using the -s
installation parameter, the available roles in the Role list appear as follows:

■ Card Admin = Access Manager Admin Key role

■ Card Module Admin = Admin Key role

■ Card Module User = User PIN role

■ Everyone

Card Explorer 53
Toolbar
The Card Explorer toolbar provides convenient access to perform routine card
management tasks.

Figure 17 - Card Explorer Toolbar

The toolbar information is always displayed, regardless of which tab is active.

Table 2 - Card Explorer Toolbar Icons Descriptions

Icon Tooltip Description

Connect Links to the Smart Card Reader dialog box, in which you
identify the reader into which the IDPrime .NET Card is
inserted.

(Authenticate) Invokes the authentication method of the current Access
Manager on the card. (The tooltip associated with the icon
is defined by the current Access Manager; for example, the
tooltip might be “Log on”.)

Refresh Refreshes the information displayed in the active Card
Explorer tab.

(Manage Access) Enables access management (for example, user access)
according to the rules specified by the current Access
Manager on the card. (The tooltip associated with the icon
is defined by the current Access Manager; for example, the
tooltip might be “Add/Remove Users”.)

Run NAnt When the Card Explorer is in VisualStudio.NET add-in
mode, executes the build file for the current project. When
the Card Explorer is run as a standalone application,
displays a Select Build File dialog box, and then executes
the selected build file. For more information, please refer to
“Building with NAnt” on page 88

Help Links to the Smartcard.NET help documentation.

54 IDPrime .NET Smart Card Integration Guide
Tab Layout
The management features are grouped into two tabs:

■ The Explorer tab offers a view of the IDPrime .NET Card's contents, and the ability
to manage assemblies, data files, and directories on the card.

Figure 18 - Card Explorer – Explorer Tab

See “Explorer Tab” on page 56 for more information about the elements on the
Explorer tab.

■ The Services tab provides a view of services running on the IDPrime .NET Card,
and provides features to manage services.

Figure 19 - Card Explorer – Services Tab

Card Explorer 55
See “Services Tab” on page 58 for more information about the elements on the
Services tab.

This is the bottom bar of the Card Explorer window:

The following information is displayed in the three fields in the bottom bar:

■ Current reader (Gemalto Reflex USB V3 0)

■ Information pertaining to the current Access Manager, for example, the name of the
current user.

■ Free space on the card in bytes (92952)

The bottom bar information is always displayed, regardless of which tab is active.

Select Smartcard Reader Details
This is the dialog box that displays when you click Details in the Select Smartcard
Reader dialog box (“Figure 15” on page 52).

Figure 20 - Select Smartcard Reader Dialog Box

Table 3 - Select Smartcard Reader Options

Element Description

Reader name Select the name of the reader in which the IDPrime .NET Card is inserted.

Show Readers Choose whether the Reader name list should be populated with the
names of all readers connected to the machine, all readers with smart
cards currently inserted, or all readers with IDPrime .NET Cards currently
inserted.

56 IDPrime .NET Smart Card Integration Guide
Explorer Tab
This is the Card Explorer, Explorer tab.

Figure 21 - Card Explorer - Explorer Tab

In the Explorer tab, when an element in the display is selected, a context-sensitive
menu specific to that element becomes available. If you are using a mouse, this menu
is available when you right-click a displayed element.

These are the context-sensitive menu options available for elements on the Explorer
tab.

PreSelected Readers In the event more than one reader is attached to the machine, choose
whether the first reader displayed in the Reader name list should be:
■ The last reader used by this application
■ The last reader used by any application
■ No reader (that is, no reader should be pre-selected)

Selfdiscover Select this check box to cause the application to attempt to find a card
containing the service that the application is requesting. If the service is
available on an attached card, the application connects to the card without
user intervention. (Otherwise, if the service is not located on the card, the
Select Smartcard Reader dialog box displays.)

Remember Settings Select this check box to save the selections you just made.

Table 3 - Select Smartcard Reader Options

Note: All menu options are visible to all users, but a menu option can be invoked only
if the user's permissions allow the action on the selected element.

Card Explorer 57
The following table describes the menu options available for each type of card element:

Table 4 - Card Element Descriptions and Menu Options

Card Element Type Menu Option Description

Card Restart Equivalent of removing and then re-inserting the
card

Memory
Mapping

Blue designates bytes currently allocated; white
designates free memory in EEPROM on the
card.

Properties See “Card Element Properties” on page 60 for
details.

Volume/Drive New Folder Add a new folder to the selected directory.

Directory/Folder Delete Remove the selected folder from the card.

New Folder Add a new folder to the selected folder.

Load File Load a new file to the card. See “Managing
Folders and Files” on page 68 for details.

Properties See “Card Element Properties” on page 60 for
details.

Executable (.exe) Execute Run the selected executable file.

Delete Remove the selected file from the card.

Properties See “Card Element Properties” on page 60 for
details.

Library (.dll) or other non-
executable file (e.g., xml file)

Delete Remove the selected file from the card.

View Content Opens the file in the application configured for
the file type on the machine.

Properties See “Card Element Properties” on page 60 for
details.

58 IDPrime .NET Smart Card Integration Guide
Services Tab
This is the Card Explorer, Services tab.

Figure 22 - Card Explorer – Services Tab

The Services tab displays a list of services currently running on the card. By default,
each card includes the following three services:

The card can also contain additional services, for example, an alternative “Access

Manager”. Each time you instantiate a service on the card, the display changes to list the
new service on the Services tab.

Table 5 - Card Services

Service Description

ContentManager (C:\System\SmartCard.dll) Card Manager service. This is the default “Access
Manager” for the card.

CardModule (MSCM)
(C:\Gemalto\CardModule.exe)

This is the instance of the Card Module.

OATHService (optional feature of the IDPrime
.NET card)
(C:\Gemalto\OATHService.exe)

The figure that displays is the AID of the OATH
service that appears in the Services tab. The AID is
one of the installation parameters when you install
the OATH service.

Card Explorer 59
If you right-click the name of a service listed in the Services tab, some services display
one or both of the following options:

Access Manager
An Access Manager service defines the authentication mechanism by which the
information and applications on the card can be accessed. The default Access
Manager, the CLOG service, requires the user to authenticate by providing a username
and password. A different Access Manager might require the user to open a secure
channel by verifying the AUTH, MAC, and KEK keys for the card. An alternative Access
Manager might authenticate using a biometric solution, like verifying the user's
fingerprint.

Because different authentication mechanisms might be appropriate at different stages
in the card's lifecycle, the card's flexible architecture provides an API for authentication
management applications. Any Access Manager application that implements the
IAccessManager interface can provide the authentication mechanism for the card. The
new Access Manager can be loaded onto the card, instantiated, and designated as the
active Access Manager service. At any given time, exactly one Access Manager
service can be active on the card, and the active Access Manager service is marked by
an asterisk in the Services tab display.

These are the steps to change which service should be used for authentication on the
card:

1 Create and load the new Access Manager service (see “Access Manager” on
page 40 for instructions about creating and loading an alternate Access Manager
server onto the card). Loading also includes instantiation, so the Services tab list
will include the new service.

2 In the Services tab, right-click the newly-added service and select Set As Access
Manager. In the display, the asterisk now designates the new Access Manager
service.

Table 6 - Menu Options

Menu Option Description

Set as Access Manager See “Access Manager” for more information about
this option.

Delete Deletes a service. If you select a service and your
permissions allow you access to the folder in which
the application is located, the service is deleted.
Note that this does not delete the server application
from the card; if you want to re-instantiate the
service, go to the Explorer tab, and either double-
click the .exe or right-click the .exe, and select
Execute.

Note: If you try to designate a service that does not implement the IAccessManager
interface, the operation fails and the old Access Manager remains active.

60 IDPrime .NET Smart Card Integration Guide
Card Element Properties
When you right-click any element in the Explorer tab display, a menu choice to display
Properties becomes available:

Figure 23 - Card Explorer - Card Element Properties

If you click Properties, a Properties sheet specific to the card element type is
displayed. The ability to view information is based on permissions for the logged on
user. Each label is always displayed, but if permissions for the current user do not allow
access to the information, the details are not visible.

This section describes property details that are displayed for each card element type.

Card Properties
The properties sheet for the card object includes information in two tabs.

This is the card object General tab:

Card Explorer 61
Figure 24 - Card Properties - General Tab

These are the elements on the General tab for the card object.

Configuring the Communication and Chip Speed
You can modify the Maximum Communication Speed and the Chip Speed in the card
object Advanced tab:

Table 7 - Card Properties - General Tab Elements

Property Description

Product Name and vendor of the .NET Smart Card Framework, taken from
the cardconfig.xml file on the card. It also shows version information
for the operating system (OS), Common Language Runtime (CLR)
and converter.

Hardware Name, vendor, version, and serial number of the chip, taken from
the cardconfig.xml file on the card.

62 IDPrime .NET Smart Card Integration Guide
Figure 25 - Card Properties - Advanced Tab

These are the elements on the Advanced tab for the card object.

Table 8 - Card Properties - Advanced Tab Elements

Property Possible
values

Default
value

Description

Maximum connection
speed (baud)

9600
19200
38400
55800
76800
111600
115200
223200

223200 Admin only may set this value. The list of allowable
values is taken from the cardconfig.xml file.
Typically, this value is set to the maximum speed at
which negotiation between the card and the reader
driver is successful. If the card and the reader are
having trouble negotiating at this speed, selecting a
different maximum connection speed is sometimes
useful.

Chip speed 0 - 100 100 Set as a percentage. Setting a slower chip speed
results in slower card transactions.
0: External Clock
1-50: Low Internal Clock (low consumption mode)
Over 50:High Internal Clock (high consumption
mode)

Cryptographic
algorithms supported

Taken from the cardconfig.xml file.

Card Explorer 63
Folder/Directory and File Properties
Folders and files have the same set of properties, organized on two tabs.

This is the General tab for a folder/directory (properties are similar for files on the
card):

Figure 26 - Folder Properties - General Tab

These are the elements on the General tab for the folder object.

Table 9 - Folder Properties - General Tab Elements

Property Description

Type For example, Directory, Executable Assembly, Library Assembly, XML
Document, Text Document.

Location File path to the object on the card.

Size Size of the object in bytes.

Public Key
Token

Each assembly (.exe or .dll) has an associated public key token. See “Public Key
Tokens” on page 67 for more information. For other objects (folders and non-
assembly files), this field is blank.

Attributes These can take the following values:
Normal - The file permissions are open to change provided the given user has
the corresponding rights – see “Permissions” in the Security tab. For example
you can make a text file readable or writable or remove these permissions if you
so desire.
Locked - Whatever file access permissions were set at the time of the lock
remain, and cannot be changed. It is not possible to return to the “Normal” state.
System Locked - same as “Locked”, expect that the file is also a system file that
was part of the .NET framework OS, and not an assembly that was loaded later.

64 IDPrime .NET Smart Card Integration Guide
This is the Security tab for a file (properties are similar for folders/directories):

Figure 27 - File Properties - Security Tab

These are the elements on the Security tab for the folder object.

To add a public key token to the list:

1 Click Add. This displays the Share with... dialog:

Table 10 - File Properties - Security Tab Elements

Property Description

Public Key Token For folders: the public key tokens for applications that are currently
permitted to write files to the selected folder.
For executables: the public key tokens for applications that are
permitted to execute the selected application.
For libraries: the public key tokens for applications that are
permitted to access the selected library.
For other files: the public key tokens for applications that are
permitted to write to the selected file.

Permissions A list of the permissions associated with the public key token. The
type of permissions listed depends on the type of file being
examined.

Add button Add a new public key token to the list by selecting an assembly (an
.exe or .dll file) from the list (the public key token for the selected
assembly is added to the list).

Remove button Remove the selected public key token from the list.

Lock button For files, this button makes the current file permissions permanent.

Modify button To change the permissions associated with the public key token.

Card Explorer 65
Figure 28 - Share With... Dialog Box

2 Choose one of the three basic sources of public key tokens as follows:

– Click From On Card Assembly and select an assembly that is already on the
card from the list.

– Click From Off Card Assembly to choose an assembly that is off the card and
use the Browse button to select the assembly.

– Click New Public Key Token and enter a new 8-byte hexadecimal key token.

3 In Permissions, you can select the permissions associated with the assembly.

The following tables show the types of permissions that can be set for different
types of files.

66 IDPrime .NET Smart Card Integration Guide
To modify the permissions for a public key token in the list:

1 In the Security tab of the File Properties dialog (shown in “Figure 27” on page 64),
select the token whose permissions you want to modify and click Modify.

The dialog changes as shown in “Figure 29”:

Figure 29 - Modifying Permissions for a Public Key Token

Table 11 - Permission Types for Assemblies

Permission Type Description

Execute Whether or not the assembly can be executed.

Manage Whether or not the public key token has permission to change the
security parameters of the assembly.

Table 12 - Permission Types for Folders

Permission Type Description

Add Whether or not the public key token can add files to the folder.

Delete Whether or not the public key token can delete files from the folder.

Enumerate Whether or not the public key token can list the files in the folder.

Manage Whether or not the public key token can change the security
parameters of the folder.

Table 13 - Permission Types for Non-Assembly Files

Permission Type Description

Read Whether or not the assembly can be executed.

Write Whether or not the public key token has permission to change the
security parameters of the assembly.

Manage Whether or not the public key token can change the security
parameters of the folder.

Card Explorer 67
2 Check or uncheck the boxes next to each permission to make your modifications,
then click Apply. The Modify button reappears

3 Click OK to close the File Properties dialog.

Public Key Tokens
The use of public key tokens provides a code-access security mechanism (see
“Application Security” on page 41).

The public key token is derived from a hash of the file's public key. Public key token
information is used in two ways:

■ To identify an assembly

■ To control access to a file or folder on the card

Identifying an Assembly
Every assembly that is loaded to the card must be strong signed and, therefore, it must
include a public key that identifies it to other applications. The public key token
information (derived from a hash of the public key) for an assembly is found on the
General tab, Public Key Token property.

Controlling Access to a File or Folder on the Card
If an assembly or folder is “Not Public” (that is, on the General tab for the object, the
File Access or Assembly Access property is set to “Not Public”), the object is
accessible only to executables with public key tokens that match the Public Key Token
list on the Security tab for the object. This is true whether the access needed is to run
an executable, access a library, or write to a file. In addition, this mechanism controls
whether assemblies or files may be loaded to a selected folder on the card. (User
access is set at the folder level, so constraining placement of uploaded assemblies or
files to a particular location enables this access enforcement mechanism to work as
intended.)

The Security tab's Public Key Token list can be modified as needed, using the Add,
Modify, and Remove buttons as shown in described in “Figure 27” on page 64.

68 IDPrime .NET Smart Card Integration Guide
Managing Folders and Files
The Card Explorer add-in tool in Visual Studio .NET enables you to manage the
contents of an IDPrime .NET Card that is connected to your computer.

Managing Folders
When you right-click a folder on the card, a menu becomes available offering several
folder management options.

Figure 30 - Contextual Menu for Folders

Delete
When you right-click any folder on the card, the menu choice Delete is available. If you
click Delete, a Confirm Folder Delete message asks you to confirm that you want to
delete the folder. If you click Yes and your permissions allow you to access the
selected folder, the folder is deleted from the card. Note that you cannot delete a folder
that is not empty.

New Folder
When you right-click any folder on the card, the menu choice New Folder is available.
If you click New Folder and your permissions allow you to access the selected folder,
the new folder is created. You must rename the folder when you create it (while the
name is still highlighted); after the folder object has been created, its name cannot be
changed. A folder cannot be moved after it is created.

Card Explorer 69
Load File
When you right-click any folder on the card, the menu choice Load File is available. If
you click Load File, the Open dialog box is displayed.

Figure 31 - The Open Dialog Box

Both assemblies (.exe and .dll files) and data files can be loaded on the card. Navigate
to the file you want to add to the card, and click Open.

If the Access Manager allows the operation and if there is room on the card, the
operation succeeds.

Properties
When you right-click any folder on the card, a menu option to view Properties is
available. See “Card Element Properties” on page 60 for information about the
properties associated with folders.

70 IDPrime .NET Smart Card Integration Guide
Managing Files
When you right-click any file on the card, a context-sensitive menu is displayed. Some
functions are specific to the file type (for example, only a .exe file can be executed,
while the content of uncompiled files only can be viewed).

Here is an example, which is the right-click menu for an executable file.

Figure 32 - Contextual Menu for Executable Files

Execute
When you right-click any executable file on the card, the menu option Execute is
available. If you click Execute and your permissions allow you to access the selected
file, the file is executed.

Delete
When you right-click any file on the card, a menu choice Delete is available. If you click
Delete, a Confirm File Delete message asks you to confirm that you want to delete the
object. If you click Yes and your permissions allow you to access the selected file, the
file is deleted from the card. Note that you cannot delete an assembly that is hosting an
active service. If the assembly hosts a service, you must first delete the service. See
“Services Tab” on page 58 for information about deleting a service.

View Content
When you right-click any non-binary file on the card, a menu option View Content is
available. File types that are associated with specific applications on your system will
open in those applications.

Save to PC as
When you right-click any non-binary file on the card, a menu option Save to PC as is
available. This enables you to save the file to your PC. It opens the Save file off card
dialog which you use to select the location where you want to save the file.

Card Explorer 71
Properties
When you right-click any file on the card, the menu option Properties is available. See
“Card Element Properties” on page 60 for information about the properties associated
with files.

Restrictions
You are able to perform actions according to the permissions associated with your
logon identity. For example, if you are logged on as a user guest, with permission for
adding files only in the D:\Pub directory, you will be unable to add files in the C:\
Gemalto directory, even if you follow the instructions correctly.

5

Visual Studio .NET
Integration

The v2.2.181 of the .NET Smart Card Framework SDK supports the following versions
of Visual Studio:

■ Visual Studio .NET 2003

■ Visual Studio 2005

■ Visual Studio 2008

v2.3 of the .NET Smart Card Framework SDK supports the following versions of Visual
Studio:

■ Visual Studio .NET 2010

Depending on install-time selections, installing the .NET Smart Card Framework SDK
might make one or both of the following features available within Visual Studio .NET:

■ “Card Explorer”, which enables you to manage the contents of an IDPrime .NET
Card that is connected to your computer

■ Templates to easily create server applications and client applications that can
access services running on an IDPrime .NET card.

Managing the .NET Card Add-in
The Card Explorer Visual Studio add-in is a dockable component that is designed to
dock with your solution explorer. Visual Studio .NET provides a tool to manage add-in
modules. You can manage the Card Explorer add-in using this feature.

How to Manage the Card Explorer Add-in
To launch the Add-in Manager tool, in the Visual Studio .NET toolbar, select Tools >
Add-in Manager. The Add-in Manager is displayed.

Visual Studio .NET Integration 73
Figure 33 - Add-In Manager

The CardExplorer add-in module is listed in the Available Add-ins column. Note that if
additional add-in modules to Visual Studio .NET are installed and registered on your
computer, your display will list those add-ins, in addition to the CardExplorer module.

Use the Add-in Manager to perform the following tasks:

■ To unload the CardExplorer add-in, deselect the check box at the left of the add-in
name, and then click OK. Note that unloading the add-in does not uninstall the
software.

■ To load the CardExplorer add-in, select the check box at the left of the add-in
name, and then click OK.

■ To specify that the CardExplorer add-in should be loaded at environment startup
time, select the check box in the Startup column, and then click OK.

It is recommended that you uncheck the command line option for the tool.

See the Visual Studio .NET help for additional information about using the Add-in
Manager.

Add-in Vs. Standalone Differences
The stand-alone CardExplorer.exe and the VS Add-in are both derived from the same
CardExplorer control. However, there are several differences that you should be aware
of:

■ Errors in the Add-in are generally reported in the Output pane of Visual Studio.

■ Errors in the stand-alone are generally reported through message boxes.

■ The Add-in automatically chooses the correct build file when you use the “NAnt”
button. In the stand-alone, you'll need to select the build file for your project.

Note: The Command Line check box has no meaning. You can clear the check box if
you wish.

74 IDPrime .NET Smart Card Integration Guide
Templates
The .NET Smart Card Framework SDK provides templates that can be used to create
applications for the IDPrime .NET Card. Depending on install-time selections, you
might have Visual C# templates, Visual Basic templates, or both installed on the
machine.

For each programming language, these templates are available:

■ netCard Server (use this template to create a server project)

■ netCard Client Console (use this template to create a client project)

Creating a Server Project
To create a server project, in the New Project dialog box, click either Visual C#
Projects or Visual Basic Projects, and then click netCard Server, as shown in
“Figure 34”.

Figure 34 - New Project Dialog Box (netCard Server)

When you start a project using the netCard Server template, application code and
project files are automatically created as a starting point. See the walkthrough in “Using
Templates to Make a Server Application” on page 76 for instructions about using the
template to create a simple server application, and for a list of files created by the
template and at compile time.

Creating a Client Project
To create a client project, in the New Project dialog box, click either Visual C#
Projects or Visual Basic Projects, and then click netCard Client Console, as shown
in “Figure 35”.

Visual Studio .NET Integration 75
Figure 35 - New Project Dialog Box (netCard Client Console)

When you start a project using the netCard Client Console template, application code
and project files are automatically created as a starting point. See the walkthrough in
“Using Templates to Make a Client Application” on page 81 for instructions about using
the template to create a simple client application, and for a list of files created by the
template and at compile time.

6

Getting Started

The walkthroughs provide instructions and examples of applications written for specific
purposes.

Using Templates to Make a Server Application
This walkthrough guides you through the process to create a simple server application,
build the application, load the application onto an IDPrime .NET Card, and start the
service contained in the server application so that the service is available to client
applications.

The IDPrime .NET Card Add-in to Visual Studio .NET includes a wizard and templates
to help you create your first server application. The wizard sets up all the references
and includes the necessary namespaces in the skeleton source code.

For build-time convenience, create both the server (card) and client (host computer or
terminal) applications within a single Visual Studio .NET solution.

Creating a New Solution
1 In the Visual Studio .NET toolbar, select File > New > Blank Solution.

Figure 36 - New Blank Solution (Server Applications)

Caution: Do not close the VS Card Explorer Add-in until you have finished creating
your server application

Getting Started 77
2 In the New Project dialog box, type in a name for the new solution and select a
location for the solution's files, and then click OK.

The following solution directories and files are created at the location specified:

In the Visual Studio .NET Solution Explorer, the Solution is displayed like this:

Opening an Existing Solution
To open a solution, in the Visual Studio .NET toolbar, select File > Open Solution, and
then navigate to the .sln file for the solution you want to open.

Creating an IDPrime .NET Card Server Application
1 In Solution Explorer, right-click the name of the solution and select Add > New

Project.

2 In the New Project dialog box, click Visual C# Projects, and then click netCard
Server.

Figure 37 - New Project Dialog Box (netCard Server)

Type in a name for the new project and select a location for the project's files (by
default, the project files are stored under the solution), and then click OK.

The following project directories and files are created at the location specified in the
New Project dialog box:

[solution_location]\SolutionName\
[solution_location]\SolutionName\SolutionName.sln
[solution_location]\SolutionName\SolutionName.suo

Solution 'SolutionName' (0 projects)

78 IDPrime .NET Smart Card Integration Guide
The DummyKeyPair.snk file is related to strong name signing. All applications added
to the card must be signed. DummyKeyPair.snk is a key pair that you can use to test
your application. Before you distribute your finished application, replace
DummyKeyPair.snk with a specific, non-test key pair.

In the Visual Studio .NET Solution Explorer, the server project is displayed like this:

[project_location]\ProjectName\AssemblyInfo.cs
[project_location]\ProjectName\DummyKeyPair.snk
[project_location]\ProjectName\MyServer.cs
[project_location]\ProjectName\MyServices.cs
[project_location]\ProjectName\nant.build
[project_location]\ProjectName\ProjectName.csproj
[project_location]\ProjectName\ProjectName.csproj.user
[project_location]\ProjectName\Readme.txt

[project_location]\ProjectName\bin\Debug\

[project_location]\ProjectName\obj\Debug\
[project_location]\ProjectName\obj\Debug\ProjectName.projdata
[project_location]\ProjectName\obj\Debug\temp\
[project_location]\ProjectName\obj\Debug\TempPE

ProjectName
 References
 mscorlib
 netCard
AssemblyInfo.cs
 MyServer.cs
 MyServices.cs
 nant.build
 Readme.txt

Getting Started 79
3 In Solution Explorer, double-click MyServer.cs to open the server application
source code file.

4 Make changes if you prefer, and save.

5 In Solution Explorer, double-click nant.build to open the build-time server
configuration file. The nant.build file is the basis for the Run nant.build icon in the
Card Explorer window. The directory property defines the directory in which the
assembly will be uploaded, and the service name is the name of the service in your
application.

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using SmartCard.Runtime.Remoting.Channels.APDU;

namespace Server
{

/// <summary>
/// Summary description for MyServer.
/// </summary>
public class MyServer
{

/// <summary>
/// specify the exposed remote object URI.
/// </summary>

 private const string REMOTE_OBJECT_URI = "myServerUri";

 /// <summary>
 /// Register the server onto the card.
 /// </summary>
 /// <returns></returns>
 public static int Main()
 {
 // Register the channel the server will be listening to.
 ChannelServices.RegisterChannel(new APDUServerChannel());

 // Register this application as a server

RemotingConfiguration.RegisterWellKnownServiceType(typeof(MyServices)
,

REMOTE_OBJECT_URI, WellKnownObjectMode.Singleton);

 return 0;
 }

}
}

80 IDPrime .NET Smart Card Integration Guide
Make changes to reflect any changes you made in the MyServer.cs file, and then
save. Specifically, if you've updated the service name or executable name, you'll
need to update these elements.

More information about nant

6 Build the server application. See the Visual Studio .NET help for instructions about
building an application. The following files are added to the project:

Debugging
The system log, D:\Pub\Console.log, helps in debugging applications. To enable this
feature, include the System.Diagnostics namespace so that you have access to the
Debug class. Strings logged to Debug.WriteLine() appear in the file after the program
has executed. The logging feature is disabled if you compile the code in Release
mode.

You can also debug your card application by developing it in the .NET Framework on
the host side first. This practice makes the host's debugging tools available.

Loading the Server onto the Card
1 Insert an IDPrime .NET card into a card reader attached to your computer.

2 In the Card Explorer, click the toolbar logon icon, and type your user name and
password.

3 In the Card Explorer, right-click the directory into which the server application
should be installed (for example, C:\Pub), and select Add > Load File.

4 Navigate to the [project_location]\ProjectName\bin\Debug\ProjectName.exe file,
and click Open.

The server application file is added to the card. The service contained in the server
application is not yet running.

<?xml version="1.0"?>
<project name="netCardProject" default="build">

 <target name="build" description="load and execute assembly">
 <load file="bin\debug\netCard Server1.exe" todir="C:\Pub"
execute="true"
 reload="true"
serviceName="myServerUri"/>
 </target>
 </project>

[project_location]\ProjectName\bin\Debug\ProjectName.exe
[project_location]\ProjectName\bin\Debug\ProjectName.hive
[project_location]\ProjectName\bin\Debug\ProjectName.hmap
[project_location]\ProjectName\bin\Debug\ProjectName.pdb

[project_location]\ProjectName\bin\Debug\stub\AssemblyInfoTemp.cs
[project_location]\ProjectName\bin\Debug\stub\MyServices.cs
[project_location]\ProjectName\bin\Debug\stub\ProjectName_stub.dll

[project_location]\ProjectName\obj\Debug\ProjectName.exe
[project_location]\ProjectName\obj\Debug\ProjectName.pdb

http://nant.sourceforge.net/

Getting Started 81
Starting a Service
To start the service, in the Card Explorer, right-click the server application file, and
select Execute. The service contained in the server application is now running and
available.

To confirm that the new service is running and available to client applications, click the
Services tab, and click the Refresh icon (see “Toolbar” on page 53). The name of the
service is displayed, along with all other services that are currently running on the card.

Deleting a Service
If you want to delete the server application from the card, these are the steps:

1 In the Card Explorer Services tab, right-click the service made available by the
server application, and select Delete.

2 In the Card Explorer Explorer tab, right-click the server application file, and select
Delete.

Using Templates to Make a Client Application
This walkthrough guides you through the process to create a simple client application
that will access a service running on an IDPrime .NET Card, and then build the
application.

The IDPrime .NET Card Add-in to Visual Studio .NET includes a wizard and templates
to help you create your first client application. The wizard sets up all the references and
includes the necessary namespaces in the skeleton source code.

For build-time convenience, you can create both the server (card) and client (host
computer or terminal) applications within a single Visual Studio .NET solution. If you
choose to do this, set the client application project to be the startup project (right-click
the client project and select Set as Setup Project).

Creating a New Solution
1 In the Visual Studio .NET toolbar, select File > New > Blank Solution.

Note: Some services cannot be deleted.

82 IDPrime .NET Smart Card Integration Guide
Figure 38 - New Blank Solution (Server Applications)

2 In the New Project dialog box, type in a name for the new solution and select a
location for the solution's files, and then click OK.

The following solution directories and files are created at the location specified:

In the Visual Studio .NET Solution Explorer, the Solution is displayed like this:

Opening an Existing Solution
To open a solution, in the Visual Studio .NET toolbar, select File > Open Solution, and
then navigate to the .sln file for the solution you want to open.

Creating a Client Application to Access a Service Running on an
IDPrime .NET Card

1 In Solution Explorer, right-click the name of the solution and select Add > New
Project.

2 In the New Project dialog box, click Visual C# Projects, and then click netCard
Client Console.

[solution_location]\SolutionName\
[solution_location]\SolutionName\SolutionName.sln
[solution_location]\SolutionName\SolutionName.suo

Solution 'SolutionName' (0 projects)

Getting Started 83
Figure 39 - New Project Dialog Box (netCard Client Console)

Type in a name for the new project and select a location for the project's files (by
default, the project files are stored under the solution), and then click OK.

The following project directories and files are created at the location specified in the
New Project dialog box.

In the Visual Studio .NET Solution Explorer, the client project is displayed like this:

[project_location]\ProjectName\AssemblyInfo.cs
[project_location]\ProjectName\MyClient.cs
[project_location]\ProjectName\ProjectName.csproj
[project_location]\ProjectName\ProjectName.csproj.user
[project_location]\ProjectName\Readme.txt

[project_location]\ProjectName\bin\Debug\

[project_location]\ProjectName\obj\Debug\
[project_location]\ProjectName\obj\Debug\ProjectName.projdata
[project_location]\ProjectName\obj\Debug\temp\
[project_location]\ProjectName\obj\Debug\TempPE\

ProjectName
 References
 netCard.Runtime.Remoting
 System
 System.Data
 System.Runtime.Remoting
 AssemblyInfo.cs
 MyClient.cs
 Readme.txt

84 IDPrime .NET Smart Card Integration Guide
3 In Solution Explorer, double-click MyClient.cs to open the client application source
code file.

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using SmartCard.Runtime.Remoting.Channels.APDU;

// Make sure you add the reference to your server stub dll.
// The stub file is automatically generated for you, under
// [Server Project Output]\Stub).

namespace Client
{

/// <summary>
/// Summary description for MyClient.
/// </summary>

 public class MyClient
 {
 private const string URL = "apdu://promptDialog/myServerUri";

 public MyClient()
 {
 // Create proxy of server
 Server.MyServices myServices = new Server.MyServices();

 // Example: invoke MyServiceExample.
 string result = myServices.MyServiceExample();

 // and display the result on the console output.
 Console.WriteLine(result);
 }

 #region Main Method implementation
 public static void Main()
 {
 APDUClientChannel channel = new APDUClientChannel();

 // register the communication channel
 ChannelServices.RegisterChannel(channel);

 // request access to server object
 RemotingConfiguration.RegisterWellKnownClientType(typeof
 (Server.MyServices), URL);

 new MyClient();

 // unregister the communication channel
 ChannelServices.UnregisterChannel(channel);
 }
 #endregion

 }
}

Getting Started 85
4 Make changes to reflect any changes you made in the server application source
code file, and save. The sample code shows communication to the card using the
APDU protocol using the PromptDialog mechanism, which means that the
application will prompt the user to identify the reader in which the IDPrime .NET
card is inserted. Two other alternatives are available:

■ SelfDiscover--an attempt is made to automatically select a reader in which an
IDPrime .NET card is inserted; if a reader is not automatically selected, the user is
prompted to identify the reader.

■ SelfDiscoverNoPrompt--an attempt is made to automatically select a reader in
which an IDPrime .NET card is inserted; if a reader is not selected, the user is not
prompted to identify the reader, and an exception is thrown.

5 Before building the client application, you must create a link to the server
application be referencing the *_stub.dll file created when the server was built. In
Solution Explorer, right-click the client project's \ProjectName\References, and
select Add Reference. In the Add Reference dialog box, in the .NET tab, click
Browse, and then navigate to the server project's ProjectName\bin\Debug\
ProjectName_stub.dll file, click Open in the Browse dialog box, and then click OK.

The serverProjectName_stub.dll file is added to the project in the client project
[project_location]\ProjectName\bin\Debug directory and in the Visual Studio
.NET Solution Explorer Client Project References.

6 Build the client application. See the Visual Studio .NET help for instructions about
building an application. The following files are added to the project:

Creating an On-Card Application without Templates
This walkthrough provides general guidelines on creating a project for on-card
applications without using SDK templates:

■ Using a Microsoft .NET Studio project with no on-card templates

■ Compiling your source files without a .NET Studio project using either the csc
compiler or nAnt

Creating an Access Manager Project Using No On-Card Templates

To create an Access Manager project using no on-card templates:

1 Start Microsoft Visual Studio .NET.

2 Click File > New > Project.

3 In the New Project dialog box, make the following choices:

■ In the Project Types pane, click Visual C > Windows.

[project_location]\ProjectName\bin\Debug\ProjectName.exe
[project_location]\ProjectName\bin\Debug\ProjectName.pdb

[project_location]\ProjectName\obj\Debug\ProjectName.exe
[project_location]\ProjectName\obj\Debug\ProjectName.pdb

Note: If you are building a project including both a server application and a client
application, set the client application project to be the startup project (right-click the
client project and select Set as Setup Project).

86 IDPrime .NET Smart Card Integration Guide
■ In the Templates pane, click Empty Project.

Figure 40 - New Project (No On-card Templates)

4 Enter a name for the project in the Name field, and click OK.

5 In the Microsoft Visual Studio window, click Project > Properties.

6 In the left pane of the Property Pages dialog box, click Build.

7 Under Build, click Advanced.

8 Check the box Do not reference Mscorlib as shown in the following example:

Figure 41 - Advanced Build Settings (No On-card Templates)

Getting Started 87
This action is required because you must use the version of Mscorlib provided with
the .NET Framework SDK. The following steps discuss how to load the proper
version of Mscorlib.

9 In the projectname dialog box, click OK.

10 In the Microsoft Visual Studio window, open the Solution Explorer if it is not
already open.

11 In the Solution Explorer, right-click References.

12 From the pop-up menu, click Add Reference.

13 In the Add Reference dialog box, click .NET Smart Card Oncard mscorlib.dll,
and click OK, as shown in the following example:

Figure 42 - Add Reference (No On-card Templates)

14 In the Add Reference dialog box, click OK.

15 Continue adding your classes to the project as normal.

Building a Project from the Command Line
This section explains the steps to build a project using the .NET command line tools.

Compiling Your Application with csc
The .NET Smart Card SDK provides a version of mscorlib that you must use instead of
the Microsoft mscorlib. For this reason, when you compile your application, you must
specify /nostdlib in the command line.

An example follows:

csc /nostdlib /r:"C:\Program Files\Gemalto\NET Smartcard Framework SDK\
v1.1.201\Libraries\On Card\Framework Libraries\SmartCard.dll"
/r:"C:\Program Files\Gemalto\NET Smartcard Framework SDK\v2.2.181\
Libraries\On Card\Framework Libraries\mscorlib.dll" *.cs

88 IDPrime .NET Smart Card Integration Guide
Note that in the preceding example, /nodistlib instructs the compiler not to use the
Microsoft mscorlib. The following switch instructs the compiler to use the version of
mscorlib provided with the .NET Smart Card Framework SDK instead:

/r:"C:\Program Files\Gemalto\NET Smartcard Framework SDK\v2.2.181\
Libraries\On Card\Framework Libraries\mscorlib.dll"

Building with NAnt
You can use NAnt to build .NET Smart Card applications. You will need to make sure
that your NAnt xml files use the .NET SDK libraries rather than the standard Microsoft
libraries.

Compiling Your Application Using NAnt
Here is an example .xml file you could use to compile an application using NAnt:

<property name="lib.dir" value="C:\Program Files\Gemalto\NET Smartcard
Framework SDK\v2.2.181\Libraries\On Card\Framework Libraries"/>

<csc target="exe" output="bin\Release\CardModuleInterface.dll"
debug="false" nostdlib="true" optimize="true" noconfig="true">
<sources>
 <includes name="*.cs"/>
 </sources>
<references basedir="${lib.dir}">
 <includes name="mscorlib.dll"/>
 <includes name="SmartCard.dll"/>
</references>
</csc>

Running Your On-card Application with a Microsoft
Debugger

Because the IDPrime .NET Card uses the standard .NET remoting architecture, you
can write your application in such a way that you can run the application independently
of the transport layer. In this section, we walk you through the process of setting up
your application to run on top of both TCP and APDU remoting layers. When you build
your application on top of the TCP layers, you can run and debug the application as a
server on your local machine. For the current IDPrime .NET Card, only APDU remoting
is available on the card.

To build an application that runs properly in both TCP and APDU mode, you need to
take the following steps:

Server-Side Code Changes
1 Start with a server project that you have generated using the IDPrime .NET card

server wizard

2 In the MyServer.cs file, change the “using” statements from:

using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using SmartCard.Runtime.Remoting.Channels.APDU;

Getting Started 89
to

using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

#if MICROSOFT

using System.Runtime.Remoting.Channels.Tcp;

#else

using SmartCard.Runtime.Remoting.Channels.APDU;

#endif

3 In your Main method, you need to add another conditional compilation statement to
set up either a TCP or an APDU channel, so

ChannelServices.RegisterChannel(new APDUServerChannel());

becomes

#if MICROSOFT

ChannelServices.RegisterChannel(new TcpServerChannel(2222));

#else

ChannelServices.RegisterChannel(new APDUServerChannel());

#endif

4 When running in TCP mode, the server will shut down as soon as the Main method
exits. We could avoid this problem by only running in debug mode and putting
break points in, but an easier way to do this is to put a Console.ReadLine into the
Main method before returning. So add:

#if MICROSOFT

Console.ReadLine()

#endif

right before the return 0; line.

Client-Side Code Changes
1 Start with a client project that you have generated using the IDPrime .NET card

client wizard.

2 We need to make the same changes that we made in step 2 of “Server-Side Code
Changes” to the “using” statements:

using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

#if MICROSOFT

using System.Runtime.Remoting.Channels.Tcp;

#else

using SmartCard.Runtime.Remoting.Channels.APDU;

#endif

90 IDPrime .NET Smart Card Integration Guide
3 We'll need to set a conditional compilation statement around the URL to change it
back and forth between TCP and APDU:

#if MICROSOFT

private const string URL = "tcp://localhost:2222/
myServerUri";

#else

private const string URL = "apdu://promptDialog/myServerUri";

#endif

4 Now wrap the channel declaration in a similar conditional compilation statement:

#if MICROSOFT

TcpClientChannel channel = new TcpClientChannel();

#else

APDUClientChannel channel = new APDUClientChannel();

#endif

Changes to the Project Settings
Each time you switch back and forth between Tcp and APDU modes, you'll need to
make a series of changes to your project settings.

Moving from APDU to Tcp
1 In each project, define MICROSOFT in the preprocessor.

2 In the server project, under the Advanced tab of the Configuration Properties, you
need to set “Do not use Mscorlib” to false.

3 In the references section of the server project, change references from the Gemalto
on-card libraries to the standard Microsoft libraries. You will need to explicitly
include the System.Runtime.Remoting library.

4 In the references section of the client project, you will need to link to a server stub
library that is generated by the soapsuds application. For more information on the
soapsuds command, see MSDN.

5 Compile both projects, and you can now start the server in the debugger.

Moving Back from Tcp to APDU
1 In each project, undefine MICROSOFT in the preprocessor.

2 In the server project, under the Advanced tab of the Configuration Properties, you
need to set “Do not use Mscorlib” to true.

3 In the references section of the server project, change references from the
Microsoft libraries to the Gemalto on-card libraries.

4 In the references section of the client project, link to the server stub that is
generated by the IDPrime .NET build process.

5 Compile both projects, and you can now load the server to the card.

7

Code Samples

The .NET Smart Card Framework SDK includes a rich set of developer guidelines:
sample code, and hints and “work arounds”. After installation, the sample code can be
found here:

[install_location]\[product version]\Samples\[sample name]

Be sure to check the IDPrime .NET Home page for more examples.

General Instructions
The samples are shipped as VS.NET projects, and have not been compiled. Since the
samples are not compiled, the reference table in the client portion of the sample must
usually be updated by hand. Take the following steps to build the projects:

1 Build the server project.

2 In the “References” folder, note the name of the stub link.

3 Delete the reference.

4 Add a new reference to the same stub, which will have been generated when you
compiled the server project. You can find the stub file in the “stub” directory under
the output directory for the server (debug or release).

5 Compile the client project.

Note: The documentation provided here supersedes the documentation that was
previously released in a Word document in the samples directory.

Table 14 - Samples provided with the SDK

Sample Description

“SecureSession” Shows how to use sinks to set up a secure session on the card.

“APDUAttribute” Shows how to communicate with a .NET smart card application
using both remoting and legacy APDU's

“Transactions” Shows how transactions can be used to roll back changes in case
of card removal or uncaught exceptions. Also shows the use of
objects that are “out of transaction”.

92 IDPrime .NET Smart Card Integration Guide
SecureSession
This sample shows how to establish a secure channel between the on-card service and
a client application, where data is encrypted using a session key. It demonstrates
functionality similar to SSL. In SSL, the transport occurs over the Http channel,
whereas in this case, it will be over the APDU channel.

Description
SecureSession means that the data exchanged between a client and the on-card
service should be encrypted using a symmetric key. The symmetric key is not shared
between the on-card service and client application; rather, it is communicated by the
client application securely to the service and is valid only for one session. “Session”
here means the communication between a smart card and two resets (see “Card Reset
Event” on page 47). This symmetric key is called a “session key.”

The most interesting aspect of this sample is that it shows how to establish secure
sessions using custom sinks. The encryption and decryption of exchanges between the
on-card service and the client are delegated to the custom sink (see “Using Custom
Sinks” on page 32), instead of being handled within the application itself. This makes
the code in service smaller, portable, and independent of any cryptographic algorithm
being used.

It is also envisioned that many client applications communicate with the on-card
service at the same time using different session keys. This implies the on-card service
needs to have one communication channel per client application (using the custom
sink containing the session key generated by a given client). These channels should be
created and registered dynamically at a port specified by the client application and
should be unregistered at the end of the session.

As mentioned above, the session key is not shared between the service and the client,
and it is securely communicated by the client to the service. In order to ensure secure
communication of the session key, the public key of the RSA key pair pertaining to the
on-card service is used. The Client generates a key 16 bytes in length and encrypts it
with the public key of the on-card service. The Service uses its private key to decrypt
this session key.

The exchange of the session key cannot occur on a secure channel, since the session
key must be exchanged in order to create the secure channel itself. To accomplish the
exchange, the service should have an APDUServerChannel listening at a specific port
(port 46 in our sample) and should provide methods that should not be invoked over
channels using the SecureSessionSink. At first, it would seem that
APDUServerChannel listening on port 46 is an answer to the problem, but it actually
results in a security flaw. People who understand the .NET remoting architecture
should note that there is no explicit link between the transport channel and service. The
system will not prevent the invocation of any service method on any channel in a given
AppDomain. This shows that MyMethodOnSecureChannel() can be invoked on port
46, which does not have any security.

To avoid the above-mentioned problem, APDUServerChannel at port 46 should also
include a custom sink that has the sole purpose of marking when a remote method is
invoked at the channel listening at port 46. This is done by setting a static Boolean
variable accessible by the service. If a method such as MyMethodOnSecureChannel()
is invoked over port 46, the Boolean variable is set to true and implementation of the
MyMethodOnSecureChannel() method expects this flag to be false.

Here are the steps for establishing and communicating over a secure channel:

1 Client1 creates and registers an APDUClientChannel without a custom sink.

Code Samples 93
2 Client1 invokes the GetPublicKey() method of service at the APDUServerChannel
listening on port 46. The remote method returns the public modulus and exponent.
Client1 then imports the public key into an RSACryptoServiceProvider.

3 Client1 generates a random key (session key) 16 bytes in length.

4 Client1 encrypts the session key generated in step 2 and the PIN of the on-card
service using the RSACryptoServiceProvider created in step 1.

5 Client1 invokes the EstablishSecureChannel() method of service at the
APDUServerChannel listening on port 46. The arguments passed to this method
are the port number (in this case, 7655) at which the newly created channel should
listen, the encrypted pin, and the encrypted session key.

6 The EstablishSecureChannel() method in the card decrypts the PIN and session
key using the private key. It validates if this PIN is correct. If it is, a new
APDUServerChannel listening at the port number passed in the method call is
created and registered with the custom sink called SessionSink.

7 Client1 creates and registers an APDUClientChannel with SessionSink using the
session key generated in step 3.

8 Client1 invokes the MyMethodOnSecureChannel() method of service at the
APDUServerChannel listening at port 7655. The data sent passes through the
SecureSessionSink of the APDUClientChannel registered in step 7 and is
encrypted with the session key generated in step 3.

9 The SessionSink of the APDUServerChannel listening at port 7655 receives the
data and decrypts it with the session key it received in step 5.

10 The MyMethodOnSecureChannel() method is invoked, and it checks if the
invocation was on a secure channel by checking the static Boolean flag. The
method returns a string that passes through the SessionSink of the
APDUServerChannel listening at port 7655 and is encrypted with the session key.

11 The SessionSink of the APDUClientChannel created in step 7 receives the
returned data and decrypts it with the session key.

These same steps will be repeated for any client that wants to communicate with the
service. The APDUServerChannels with SessionSink are unregistered and destroyed
on a reset (that is, the end of a smart card session).

Running the Sample
Load the assembly 'SecureSessionExample.exe' on the card, execute it to start the
service. Run the client applications.

Code Extract
Below are some code snippets to illustrate the steps described above.

// Create and register a channel at port 46 that uses
// SesssionEstablisherSinkProvider with a ProcessMessage() method set to the
//static Boolean flag
IServerChannelSinkProvider newProvider = new
SessionEstablisherSinkProvider(null, null);
newProvider.Next = new APDUServerFormatterSinkProvider();
APDUServerChannel channel = new APDUServerChannel(newProvider,46);
ChannelServices.RegisterChannel(channel);

// ProcessMessage() method of SessionEstablisherSink
{
 // Let's mark the fact that we are coming from SessionEstablisherSink
 MyService._onEstablisherChannel = true;

94 IDPrime .NET Smart Card Integration Guide
 ServerProcessing srvProc = _nextSink.ProcessMessage(sinkStack, requestMsg,
requestHeaders, requestStream, out responseMsg, out responseHeaders, out
responseStream);
 // returning status information
 return srvProc;
}

// EstablishSecureChannel method of Service (invoked on channel listening at
// port 46)
public void EstablishSecureChannel(int port,byte[] pin,byte[] sessionKey)
{
 if(!_onEstablisherChannel) throw new UnauthorizedAccessException("This
method is to be called with channel having SessionEstablisherSink");
 // Decrypt the pin and sessionKey first
 pin = _rsaProvider.Decrypt(pin,false);
 sessionKey = _rsaProvider.Decrypt(sessionKey,false);
 // Verify the PIN
 _myPIN.Verify(new String(cpin));

 // Create and register the channel at the specified port and using

//SessionSink, set up the SecureSink properties.
 Hashtable properties = new Hashtable();
 properties["key"] = sessionKey;
 IServerChannelSinkProvider newProvider = new
SessionSinkProvider(properties, null);
 newProvider.Next = new APDUServerFormatterSinkProvider();
 APDUServerChannel channel = new APDUServerChannel(newProvider,port);
 ChannelServices.RegisterChannel(channel);
}

// ProcessMessage() method of SessionSink
{
 // Decrypt the inbound message
 requestStream =
EncryptionHelper.ProcessInboundStream(requestStream,"Rijndael",_sessionKey);
 // Mark that we are coming from SessionEstalisherSink
 MyService._onEstablisherChannel = false;
 ServerProcessing srvProc = _nextSink.ProcessMessage(sinkStack,
requestMsg, requestHeaders, requestStream, out responseMsg, out
responseHeaders, out responseStream);
 // Encrypt the outbound message
 responseStream =
EncryptionHelper.ProcessOutboundStream(responseStream,"Rijndael",_sessionKey);
 // Return the status information
 return srvProc;
}

// MyMethodOnSecureChannel.
public string MyMethodOnSecureChannel(byte[] param1)
{
 // If we came through the channel listening at port, we throw an

//exception
 if(_onEstablisherChannel) throw new UnauthorizedAccessException("You
cannot access MyMethodOnSecureChannel without SessionSink");

 // Return data will be encrypted with the session key by SessionSink.
 return "This is fun";
}

// Unregister all the channels on reset or power down
private void OnReset(object sender, SessionEndedEventArgs e)
{

Code Samples 95
 MyService._onEstablisherChannel = false;
 // On reset unregister the channels that were dynamically created and use
SessionSink

 ...
 }

 // Client calls EstablishSecureChannel at port 46
{
 APDUClientChannel channel = new APDUClientChannel("noprovider",null);
 ChannelServices.RegisterChannel(channel);
 // Connect to the service on the clear channel.
 MyService sessionEstablish =
(MyService)Activator.GetObject(typeof(MyService),MYSERVICE_URI_1,"noprovider")
;

 // This is the PIN that we share with the card
 byte[] pin = new byte[]
{(byte)'f',(byte)'i',(byte)'r',(byte)'s',(byte)'t',(byte)'P',(byte)'i',(byte)'
n'};
 // Encrypt the pin and session key using the public key of the card
 byte [] encryptedPin = rsaProvider.Encrypt(pin, false);
 byte [] encryptedSessionKey = rsaProvider.Encrypt(sessionKey, false);
 // Now call the EstablishSecureChannel method of the card using the
encrypted PIN
 // and session key. The card will set up an encrypted channel using the
provided // session key.
 sessionEstablish.EstablishSecureChannel(7655, encryptedPin,
encryptedSessionKey);
}

// Client calls MyMethodOnSecureChannel at 7655
{
 // Set up a Sink Provider with a SessionSink attached to it using the
 // session key as a parameter for creating the SessionSink.
 Hashtable properties = new Hashtable();
 properties["key"] = sessionKey;
 IClientChannelSinkProvider provider = new
APDUClientFormatterSinkProvider();
 provider.Next = new SessionSinkProvider(properties);
 // Create and register a new channel using the sink provider that we've

// just created.
 channel = new APDUClientChannel("SessionSinkClient", provider);
 ChannelServices.RegisterChannel(channel);
 // Now make a call to get the service again, but this time using the new

//channel.
 // Note that we explicitly give the name of the channel as the third
 // argument to Activator.GetObject.
 MyService service =
(MyService)Activator.GetObject(typeof(MyService),MYSERVICE_URI_2,"SessionSinkC
lient");
 // The data being sent to and from the card on the secure channel is now
 // encrypted with the session key.
 Console.WriteLine(service.MyMethodOnSecureChannel(new byte[] { 1,2,3,4,5}
));
}

96 IDPrime .NET Smart Card Integration Guide
APDUAttribute
This sample shows how you can use the APDUAttribute to support both legacy
applications and .NET remoting.

Description
The remote methods of the server are decorated with the APDUAttribute, which allows
the IDPrime .NET Card to support communication directly using traditional ISO 7816-4
APDUs. This is important if your application must be backwards-compatible with a
terminal or device that does not support .NET remoting.

The sample illustrates not only the APDUAttribute itself, but the use of the
APDUException attribute, which allows you to translate .NET exceptions into ISO
status words.

Two clients are provided. One is a traditional .NET smart card client application that
uses remoting to communicate with the card. The second is a C++ application that
uses the Winscard API to send APDUs directly to the card.

Execution
Install the 'Gemalto.Samples.APDUAttribute.exe' on the card. You should try running
both the CppClient and RemotingClient against the server.

Code Extract
Here is a sample method from the server application. This method is decorated with
the APDU attribute as well as the APDUException attribute. The remoting client calls
this method by invoking the SampleMethodWhichThrowException method on a proxy
object. The C++ client calls this method by sending the APDU “B0340000010x” to the
card, where x is passed to the method as a parameter and determines which exception
is thrown.

[APDU("B0340000")]
[APDUException(typeof(ApplicationException), "6D01")]
[APDUException(typeof(ArgumentException), "6D02")]
[APDUException(typeof(ArgumentNullException), "6D03")]
[APDUException(typeof(ArithmeticException), "6D04")]
public void SampleMethodWhichThrowException(byte b)
{

WriteLine("SampleMethodWhichThrowException called");

switch(b)
{

 case 0x00:
 WriteLine("Throwing ApplicationException..");
 throw new ApplicationException();
 case 0x01:
 WriteLine("Throwing ArgumentException..");
 throw new ArgumentException();
 case 0x02:
 WriteLine("Throwing ArgumentNullException..");
 throw new ArgumentNullException();
 case 0x03:
 WriteLine("Throwing ArithmeticException..");
 throw new ArithmeticException();

Code Samples 97
}
}

Transactions
This sample shows how to use Transaction attributes (see “Transactions” on page 37)
to ensure that your card data remains in a well-known state when the card is removed
or an uncaught exception is thrown. It also shows how the TryCounter class can be
used to keep data “out of transaction”.

Description
The service has two fields: field, which is an int, and tc, which is a TryCounter. It also
has three methods. Each method increments both fields, and then throws an exception
that is not caught on the card. The three methods illustrate the different behaviors
when methods are or are not decorated with the Transaction attribute. In the methods
decorated with the Transaction attribute, any changes made to the int are rolled back
when the exception is thrown. The TryCounter, however, continues to increment,
because the TryCounter is a special class that is not affected by Transactions. One of
the methods (NestedTransaction) calls a method that is not explicitly under transaction
in order to demonstrate that methods that are called by a method under transaction are
also considered to be under transaction.

Execution
Install the Gemalto.Samples.TransactionSample.exe' on the card, and execute the
client on the host.

Code Extract
Here is an extract of a method decorated with the Transaction attribute.

[Transaction]
 public void UnderSimpleTransaction()
 {
 field++; // field is an int
 tc.Value++; // tc is an instance of the TryCounter class
 throw new ApplicationException();
 }

In the above sample, the field value will be reset to its original value when the
ApplicationException is thrown, while the TryCounter will be incremented.

8

Client-Side Components

Some components in the .NET Smart Card Framework SDK reside on the client
machine.

SmartCard_Stub
The SmartCard_Stub.dll contains stub declarations for the card's ContentManager
service (described on page 48. You would link to the SmartCard_Stub when you want
to access the ContentManager directly using remoting. The full description of the
ContentManager service is provided in the .NET Card Framework API documentation.

Referencing the ContentManager from Your Project
You can add the SmartCard_Stub to your project by adding it as a reference (see
“Figure 43”).

Figure 43 - Add Reference (SmartCard_Stub)

Client-Side Components 99
Once you have added the SmartCard_Stub to your project, you can use remoting to
connect to the ContentManager service that is pre-installed on the card.

The .NET Smart Card SDK also supplies a client side wrapper for the ContentManager
service called CardAccessor that creates its own remoting connection to the card (see
“CardAccessor Class”).

SmartCard.Runtime
The SmartCard.Runtime.dll (which we'll refer to from now on as the Client runtime
library) contains several items of interest to developers:

■ It contains the client remoting framework to allow you to communicate with .NET
smart card services using the standard .NET remoting architecture.

■ It contains the CardAccessor class, which is a wrapper for the ContentManager
service.

■ It contains the definitions of the IAccessManagerClient interface, which you will
need in order to build a custom access manager.

A brief overview of each of these is given here. However, the API for each of these is
described in full in the .NET Smartcard Client API help file.

Client Remoting Components
The client runtime library contains the APDUClientChannel as well as its supporting
classes. When using the .NET remoting framework, you use the APDUClientChannel
to talk to your .NET Smart Card service. For example:

APDUClientChannel channel = new APDUClientChannel();
ChannelServices.RegisterChannel(channel);
MyOnCardService service =
(MyOnCardService)Activator.GetObject(typeof(MyOnCardService), "apdu://
selfDiscover/MyURI");

CardAccessor Class
The CardAccessor class provides a wrapper to the ContentManager class. When using
the CardAccessor class, you do not need to set up remoting channels to access the
ContentManager. This is handled silently by the CardAccessor class.

AccessManagerClient Interface
The IAccessManagerClientInterface allows you to implement a custom client for an
Access Manager (see page 40) that you write. The IAccessManagerClientInterface will
be called by the Card Explorer tool to log you into the card when using a card with your
AccessManager installed. In order for the Card Explorer to find the right
implementation of IAccessManagerClient, you must register your client assembly in the
Config.xml file of your installation \bin directory.

The SDK ships with an AccessManager installed (for example the Card Module). The
full source code is available for both the client and server components. You can find
this source code in the \Samples\src\SampleAccessManager directory of your SDK.

100 IDPrime .NET Smart Card Integration Guide
C++ Marshaller

Why a C++ Marshaller?
The IDPrime .NET card allows application developers to concentrate on building
service interfaces on the card without worrying about the implementation of the APDU
transport protocol. By default, this abstraction takes place using the .NET remoting
architecture. However, you may wish to write an application on the IDPrime .NET card
that does not operate in a .NET environment. This could happen if, for example, you
were writing a service such as a GINA, which would be invoked at boot time, and might
need to launch before the .NET runtime could be loaded.

Where Can I Find the C++ Marshaller?
This is provided free of charge as part of the IDPrime .NET SDK.

When you install the SDK, the C++ Marshaller files can be found in the directory

[Install Directory]\[Install Version]\Libraries\Off Card\Marshaller

Using the Marshaller
When you build an IDPrime .NET Card server application using Visual Studio, there are
three post-build processes that take place. First, a converter runs that manipulates the
IL code in your assembly to prepare it for loading to the card. Then, a stub DLL is
generated for your public interface and placed in the “stub” directory, which will be
located under the target directory for your .exe (typically ./bin/Debug/stub or ./bin/
Release/stub). Finally, the C++ marshaller creates a C++ header file (.h) and C++
source file (.cpp) in the stub directory.

To use the generated C++ files, include them in your project. You'll then need to extend
your Include path to:

[Install Directory]\[Install Version]\Libraries\Off Card\Marshaller

You will also need to link to Marshaller.lib and extend your Link path to:

[Install Directory]\[Install Version]\Libraries\Off Card\Marshaller

P
artII
.NET Minidriver API

9

Introduction to Part 2

Part 2 of this document lists all of the functions that are available at the API level for
IDPrime .NET cards. These functions can be called using .NET Remoting, that is, there
is no need to build an explicit APDU to call them. In order to call these methods, it is
necessary to include the CardModuleService.cpp and CardModuleService.h files in the
client application program. These files can be found in the SDK associated with the
.NET card.

The card API has an interface that is common to the V5, V6 and V7 specifications. The
V5 methods are different to the V6 and V7 methods, so this document describes them
separately.

In a Base CSP architecture, this card API can be called by the host Minidriver .dll
that is installed on the PC and is compliant with the Microsoft Minidriver V5, V6
and V7 specifications.

10
Minidriver Interface V5/V6/V7

This chapter shows the code for the Minidriver interface which is common to the three
versions of the Microsoft specifications, V5, V6 and V7 supported by IDPrime .NET
cards.

namespace Axalto.netCard.CardModuleInterface
{
 using System;

 public interface ICardModuleInterface
 {
 // Auhentication management methods
 byte[] GetChallenge();
 void ExternalAuthenticate(byte[] response);

void ExternalAuthenticateAM(byte[] response);
void ChangeReferenceData(byte mode, byte role, byte[] oldPin,

 byte[] newPin, int maxTries);
 void VerifyPin(byte role, byte[] oldPin);
 int GetTriesRemaining(byte role);
 void LogOut(byte role);
 bool IsAuthenticated(byte role);
 byte MaxPinRetryCounter { get; }
 bool AdminPersonalized { get; }
 bool UserPersonalized { get; }

 // Containers & Crypto management methods
 void CreateCAPIContainer(byte ctrIndex, bool keyImport,
 byte keySpec, int keySize, byte[] keyValue);
 void DeleteCAPIContainer(byte ctrIndex);
 byte[] GetCAPIContainer(byte ctrIndex);
 byte[] PrivateKeyDecrypt(byte ctrIndex, byte keyType,
 byte[] encryptedData);

 // Information management methods
 int[] QueryFreeSpace();
 int[] QueryKeySizes();

 // Filesystem management methods
 void CreateFile(string path, byte[] acls, int initialSize);
 void CreateDirectory(string path, byte[] acls);
 void WriteFile(string path, byte[] data);

Note: The end of the code has a part that is specific to the V7 of the minidriver.

104 IDPrime .NET Smart Card Integration Guide
 byte[] ReadFile(string path, int maxBytesToRead);
 void DeleteFile(string path);
 void DeleteDirectory(string path);
 string[] GetFiles(string path);
 byte[] GetFileProperties(string path);

 // Version management
 string Version { get; }
 void SetHostVersion(uint hostVersion);

 // MiniDriver V6/V7 specific

 // Auhentication management methods
 byte[] GetChallengeEx(byte role);
 byte[] AuthenticateEx(byte mode, byte role, byte[] pin);
 void DeauthenticateEx(byte roles);
 void ChangeAuthenticatorEx(byte mode, byte oldRole,
 byte[] oldPin, byte newRole, byte[] newPin,
 int maxTries);

 // Properties management methods
 byte[] GetContainerProperty(byte ctrIndex, byte property,
 byte flags);
 void SetContainerProperty(byte ctrIndex, byte property,
 byte[] data, byte flags);
 byte[] GetCardProperty(byte property, byte flags);
 void SetCardProperty(byte property, byte[] data,
 byte flags);
 }
}

11
Minidriver V5 Methods

This chapter lists the methods that are available for the V5 minidriver, that is those
defined in V5 of the Microsoft Smart Card Minidriver Specification.

Authentication Management Methods

byte[] GetChallenge()
Returns a challenge value (without 0x00) of 8 bytes. It is possible to have consecutive
repeated calls to this function.

void ExternalAuthenticate(byte[] response)
Authenticates the Admin role if response = 3DES_CBC-Encrypt (challenge,
Admin_Key).

The challenge is 8 bytes of data returned by GetChallenge() and Admin_Key is a 24-
byte 3DES key with a default value = 00…00.

void ExternalAuthenticateAM(byte[] response)
Authenticates the Card Access Manager Admin role if response = 3DES_CBC-Encrypt
(challenge, Access_Manager_Admin_Key).

The challenge is 8 bytes of data returned by GetChallenge() and
Access_Manager_Admin_Key is a 24-byte 3DES key with a default value = FF…FF.

Note: The methods in this section are those used by the card. The minidriver
Axalto.dll transforms the methods defined in the Microsoft V5 specification to those in
this chapter. The names of the methods in this chapter are not identical to their MS
equivalents.

Some of these methods use the role identifier “access manager admin key”. This key
only applies if the card module was installed with the -s parameter. If it was not
installed with the -s parameter, the “access manager admin key” is the same as the
default “admin key” (role ID #2)

106 IDPrime .NET Smart Card Integration Guide
void ChangeReferenceData(byte mode, byte role, byte[] oldPin,
byte[] newPin, int maxTries)

Unblocks the User PIN or changes the User PIN, 3DES Admin Key, or 3DES Access
Manager Admin Key.

mode: 0 = Change, 1 = Unblock.

role: 0x01 = User PIN, 0x02 = Admin Key, 0x80 = Access Manager Admin Key.

Unblock (mode = 1):
■ role: The role to be unblocked, it must be 1. Only a User PIN can be unblocked.

■ oldPin: It must be a valid response (8 bytes) of a challenge obtained with
GetChallenge().

■ newPin: The new PIN value to be set for User PIN. PIN value can be 4 to 256
bytes long.

The command cannot be used to unblock the Admin Key or Access Manager Admin
Key.

Change (mode = 0):
■ role: The role identifier to be changed, User PIN, Admin Key or Access Manager

Admin Key.

■ oldPin:

– If role = Admin Key or Access Manager Admin Key, it must be a valid response
(8 bytes) of a challenge obtained with GetChallenge().

– If role = User, it must be the current value of User PIN.

■ newPin:

– If role = Admin Key or Access Manager Admin Key, it must be a 24-byte 3DES
key value that will be the new Admin Key.

– If role = User PIN, it must be the new PIN value of the User PIN. PIN value can
be 4 to 256 bytes long.

In all cases maxTries is the new max tries counter for the changed/unblocked PIN/
Key. If maxTries = -1 it means that the current max tries counter is not modified.

If the Change/Unblock operation fails an exception is thrown.

void VerifyPin(byte role, byte[] oldPin)
Verifies the User PIN.

role: 1 = User PIN, other values are RFU.

oldPin: The PIN value to be verified. PIN value can be 4 to 256 bytes long.

int GetTriesRemaining(byte role)
Returns the current retries counter of the requested role.

role: 1 = User PIN, 2 = Admin Key.

Caution: If you block the Admin key, the card can no longer be used.

Minidriver V5 Methods 107
void LogOut(byte role)
Deauthenticates the specified role.

role takes one of the following values:

– 0x01 = User PIN

– 0x02 = Admin Key

– 0X04 = PIN role #3

– 0X08 = PIN role #4

– 0X10 = PIN role #5

– 0X20 = PIN role #6

– 0X40 = PIN role #7

– 0X80 = Access Manager Admin Key

bool IsAuthenticated(byte role)
Indicates if the specified role is currently authenticated.

role takes one of the following values:

– 0x01 = User PIN

– 0x02 = Admin Key

– 0X04 = PIN role #3

– 0X08 = PIN role #4

– 0X10 = PIN role #5

– 0X20 = PIN role #6

– 0X40 = PIN role #7

– 0X80 = Access Manager Admin Key

Returns False if not authenticated, True if authenticated.

byte MaxPinRetryCounter {get;}
Gets the maximum User PIN retry counter value.

bool AdminPersonalized {get;}
Gets indication if the Admin Key (role 2) has been changed from initial value. TRUE is
already changed, else FALSE.

bool UserPersonalized {get;}
Gets indication if the User PIN (role 1) has been changed from initial value. TRUE is
already changed, else FALSE.

108 IDPrime .NET Smart Card Integration Guide
Containers & Crypto Management Methods

void CreateCAPIContainer(byte ctrIndex, bool keyImport, byte
keySpec, int keySize, byte[] keyValue)

Creates an RSA key in the specified container. The key can be generated on board or
imported. A key container can contain up to 2 RSA key-pairs, the Exchange key and
the Signature key. The 2 keys in a container can have different sizes from 512 bits to
2048 bits.

The User PIN must be verified to authorize access to this command.

If the key already exists, it will be overwritten.

ctrIndex: The container index to be created, from 0 to N (N = max number of
containers supported by the minidriver, 15 in current version).

keyImport: TRUE if the key is imported, FALSE if the key must be generated on board.

keySpec: 1 = Exchange key, 2 = Signature key.

keySize: The size in bits of the key to be created (between 512 and 2048).

keyValue: A key blob (byte array) containing the RSA key-pair value when it is
imported. Null if the key must be on board generated.

The key blob must be formatted as follows:

Key Blob = Prime P || Prime Q || Inverse Q || DP || DQ || Private Exponent D || Modulus
|| Public Exponent E

■ Prime P length = Key_Size_Bytes / 2 bytes

■ Prime Q length = Key_Size_Bytes / 2 bytes

■ Inverse Q length = Key_Size_Bytes / 2 bytes

■ DP length = Key_Size_Bytes / 2 bytes

■ DQ length = Key_Size_Bytes / 2 bytes

■ Private Exponent D length = Key_Size_Bytes bytes

■ Modulus length = Key_Size_Bytes bytes

■ Public Exponent E length = 4 bytes

void DeleteCAPIContainer(byte ctrIndex)
Deletes the key(s) in the specified container. If the container contains both Exchange
and Signature keys, both will be deleted.

The User PIN must be verified to authorize access to this command.

ctrIndex: The container index to be deleted, from 0 to N (N = max number of
containers supported by the minidriver, 15 in current version).

Minidriver V5 Methods 109
byte[] GetCAPIContainer(byte ctrIndex)
Returns a byte array blob containing the public key(s) in the selected container.

This command execution is free but it throws an exception if the container is empty (no
signature key and no exchange key).

ctrIndex: The container, from 0 to N (N = max number of containers supported by the
minidriver, 15 in current version).

The returned blob is formatted as follows:

Blob = [Signature_Pub_Key] || [Exchange_Pub_Key]

Signature_Pub_Key and Exchange_Pub_Key are optional depending on which key
exists in the container and are sequences of 3 TLV formatted as follows:

■ T_Key_Type = 0x03

■ L_Key_Type = 0x01

■ V_Key_Type = 0x01 for Exchange_Pub_Key or 0x02 for Signature_Pub_Key

■ T_Key_Pub_Exp = 0x01

■ L_Key_Pub_Exp = 0x04

■ V_Key_Pub_Exp = Value of Public key Exponent on 4 bytes.

■ T_Key_Modulus = 0x02

■ L_Key_Modulus = Key_Size_Bytes >> 4 (1 byte !)

■ V_Key_Modulus = Value of Public key Modulus on Key_Size_Bytes bytes.

The 4-bit shift on L_Key_Modulus is to be able to pass the Modulus length on 1 byte for
values 64 to 256 (512 bits to 2048 bits).

byte[] PrivateKeyDecrypt(byte ctrIndex, byte keyType, byte[]
encryptedData)

Performs an RSA raw decryption with the selected key.

The User PIN must be verified to authorize access to this command.

ctrIndex: The container index to be used, from 0 to N (N = max number of containers
supported by the minidriver, 15 in current version).

keySpec: 1 = Exchange key, 2 = Signature key.

encryptedData: A byte array containing the data to be decrypted. Size of the encrypted
data must be equal to the key size in bytes.

This command returns a byte array containing the decrypted data.

110 IDPrime .NET Smart Card Integration Guide
Information Management Methods

int[] QueryFreeSpace()
Returns a 3 integer array with the following information:

Int[0]: Number of used containers.

Int[1]: Maximum number of containers managed by the minidriver.

Int[2]: Free memory size (in bytes) on the card.

This command execution is free.

int[] QueryKeySizes()
Returns a 4 integer array with the following information:

Int[0]: Minimum key size (512).

Int[1]: Maximum key size (2048).

Int[2]: Key size increment (128).

Int[3]: Default key size (1024).

This command execution is free.

File System Management Methods

void CreateFile(string path, byte[] acls, int initialSize)
Creates a file in the card that will be used to store information (byte array format).

The User PIN or the Admin key must be verified to authorize access to this command.

path: The full name of the file. Only one level of directory is supported, so a name can
be “fname” if the file is in the root directory or “dname\fname” if the file is in the “dname”
directory.

■ Directory and file names are limited to 8 characters.

■ If the file (or a directory with the same name as the file to be created) already exists
an exception is thrown.

■ If the directory name does not exist an exception is thrown.

acls: The access conditions list of the file to be created. The acls parameter is a 3-byte
array formatted as follows:

■ acl[0]: Admin AC.

■ acl[1]: User AC.

■ acl[2]: Everyone AC.

Each AC is a bit mask of the following rights:

■ Right_Execute = 1 (RFU)

■ Right_Write = 2

■ Right_Read = 4

initialSize: The size that must be reserved for the file at creation time. The file size is
variable, which means that when writing in the file the initial size can be increased or
decreased depending on the size of the data to write.

Minidriver V5 Methods 111
void CreateDirectory(string path, byte[] acls)
Creates a directory in the root (only one level) of the file system.

The User PIN or the Admin key must be verified to authorize access to this command.

path: The name of the directory.

■ Directory and file names are limited to 8 characters.

■ If the directory (or a file with the same name as the directory to be created) already
exists an exception is thrown.

acls: The access conditions list of the directory to be created. The acls parameter is a
3- byte array formatted as follows:

■ acl[0]: Admin AC.

■ acl[1]: User AC.

■ acl[2]: Everyone AC.

Each AC is a bit mask of the following rights:

■ Right_Write = 2 // Apply to CreateFile and DeleteFile in this directory

■ Right_Read = 4 // Apply to EnumFiles in this directory

Note: The root directory acls must be:

■ acl[0]: 6 // Admin Write + Read

■ acl[1]: 6 // User Write + Read

■ acl[2]: 4 // Everyone read

void WriteFile(string path, byte[] data)
Writes data into an existing file.

The write AC for file must be respected (User/Admin/Everyone authenticated
depending on file acls).

path: The full name of the file.

■ Directory and file names are limited to 8 characters.

■ If the file does not exist, an exception is thrown.

■ If the directory name does not exist, an exception is thrown.

data: A byte array containing the data to write in the file. If the data length is different
from the current file size the file is resized according to the new size.

byte[] ReadFile(string path, int maxBytesToRead)
Reads data from an existing file.

The AC for file read must be respected (User/Admin/Everyone authenticated
depending on file acls).

path: The full name of the file.

■ Directory and file names are limited to 8 characters.

■ If the file does not exist, an exception is thrown.

maxBytesToRead: RFU, must be 0.

This command returns a byte array with the contents of the file.

112 IDPrime .NET Smart Card Integration Guide
void DeleteFile(string path)
Deletes an existing file.

The write AC for the parent directory must be respected (User/Admin/Everyone
authenticated depending on directory acls).

path: The full name of the file.

■ Directory and file names are limited to 8 characters.

■ If the file does not exist, an exception is thrown.

void DeleteDirectory(string path)
Deletes an existing directory.

The write AC for parent directory (always root directory) must be respected (User/
Admin/Everyone authenticated depending on root directory acls).

path: The name of the directory.

■ Directory and file names are limited to 8 characters.

■ If the directory does not exist, an exception is thrown.

■ If the directory is not empty an exception is thrown.

string[] GetFiles(string path)
Returns the list of files contained in a directory.

The read AC for parent directory must be respected (User/Admin/Everyone
authenticated depending on directory acls).

path: The name of the directory containing the files to be listed.

■ Directory and file names are limited to 8 characters.

■ If the directory does not exist, an exception is thrown.

■ Null means root directory.

This command returns a string array where each string is a short file name (without
directory name) contains in the directory.

byte[] GetFileProperties(string path)
Returns information about an existing file.

The read AC file must be respected (User/Admin/Everyone authenticated depending
on file acls).

path: The full name of the file.

■ Directory and file names are limited to 8 characters.

■ If the file does not exist, an exception is thrown.

The returned information is a 7-byte array formatted as follows:

■ byte[0]: acls[0] of the file.

■ byte[1]: acls[1] of the file.

■ byte[2]: acls[2] of the file.

■ byte[3…6]: File length with (LSB->MSB).

Minidriver V5 Methods 113
Version Management Methods

string Version {get;}
Returns a version string that identifies the MiniDriver on card application:

■ “5.0.0.0”

■ “6.0.0.0”

■ “7.0.0.0”

■ “7.1.0.0”

void SetHostVersion(uint hostVersion)
This is used by the host minidriver to inform the card of it's version number (version of
the host). The minidriver assembly can use this information to adapt some behavior to
the host version.

12
Minidriver V6/V7 Methods

This chapter lists the methods that are available for the V6 and V7 minidrivers.

Authentication Management Methods

Role Identifiers
In the following methods the role parameter can have the following values:

■ User PIN = 0x01

■ Admin Key = 0x02

■ PIN#3 = 0x04

■ PIN#4 = 0x08

■ PIN#5 = 0x10

■ PIN#6 = 0x20

■ PIN#7 = 0x40

■ Access Manager Admin Key = 0x80

byte[] GetChallengeEx(byte role)
Returns a challenge value (without 0x00) of 8 bytes. It is possible to have consecutive
repeated calls to this function.

role: Admin Key or Access Manager Admin Key, other values are RFU in current
version.

byte[] AuthenticateEx(byte mode, byte role, byte[] pin)
Authenticates the requested role depending on the authentication mode.

mode: 0 = Plaintext, 1 = Get session PIN, 2 = Verify session PIN.

role: User PIN, Admin Key, PIN#3, PIN#4, PIN#5, PIN#6, PIN#7 or Access Manager
Admin Key.

Note: Some of these methods use the role identifier “access manager admin key”.
This key only applies if the card module was installed with the -s parameter. If it was
not installed with the -s parameter, the “access manager admin key” is the same as
the default “admin key” (role ID #2)

Minidriver V6/V7 Methods 115
Plaintext Authentication (mode = 0):
This mode is similar to VerifyPin() v5 method if role = User PIN or role = PIN#3 to
PIN#7 and it is similar to ExternalAuthenticate() v5 method if role = Admin Key or
Access Manager Admin Key.

■ If role = User PIN or role = PIN#3 to PIN#7, pin is the PIN value to be verified for
this role. PIN value can be 4 to 256 bytes long.

■ If role = Admin Key, pin must be a response to a previous challenge with response
= 3DES_CBC-Encrypt(challenge, Admin_Key). The challenge is 8 bytes of data
returned by GetChallengeEx() and Admin_Key is a 24 bytes 3DES key with a
default value = 00…00.

■ If role = Access Manager Admin Key, pin must be a response to a previous
challenge with response = 3DES_CBC-Encrypt(challenge,
Access_Manager_Admin_Key). The challenge is 8 bytes of data returned by
GetChallengeEx() and Access_Manager_Admin_Key is a 24 bytes 3DES key with
a default value = FF…FF.

Session PIN Authentication (mode = 1 / 2):
This mode enables verification of a PIN without sending the PIN value to the card. The
Session PIN Authentication process is split into 2 steps, a first call to get a Session PIN
token (mode = 1) and a second call to verify a Session PIN cryptogram computed by
the application (mode = 2). The Session PIN Authentication mode is not supported
with Admin Key or Access Manager Admin Key.

■ If mode = 1 (Get Session PIN), the card returns an 8-byte Session PIN token =
3DES_ECB-Encrypt(random, 3DES_PIN_Key).

– random = An 8-byte random computed by the card.

– 3DES_PIN_Key = SHA1(Real_PIN_Value) || 00000000 24 bytes).

Real_PIN_Value = The real PIN value known by the card.

■ If mode = 2 (Verify Session PIN), pin must be a 20-byte Session PIN cryptogram =
SHA1(random || Real_PIN_Value) to be successfully verified by the card.

– random = The 8-byte random computed by the card.

– Real_PIN_Value = The real PIN value known by the card.

An external application that wants to use the Session PIN mode to authenticate a User,
must process as follows:

■ Call AuthenticateEx() with mode = 1 to get the Session PIN token.

■ Collect the PIN_Value known by the User (ex: UI for PIN capture).

■ Decrypt the Session PIN token to retrieve the supposed card random where
supposed_random = 3DES_ECB-Decrypt (token, 3DES_PIN_Key)

■ 3DES_PIN_Key = SHA1(PIN_Value) || 00000000 24 bytes).

■ Build the Session PIN cryptogram = SHA1(supposed_random || PIN_Value).

■ Call AuthenticateEx() with mode = 2 to verify the Session PIN cryptogram.

■ The card will only authenticate the user if the entered PIN was correct and
permitted to decrypt properly the Session PIN token encrypted by the card with the
real PIN value.

The PIN ratification counter is decremented during Get Session PIN, it is reset to
maximum counter value on a successful Verify Session PIN.

The pin parameter is not used during Get Session PIN.

This method throws an exception if authentication fails.

116 IDPrime .NET Smart Card Integration Guide
void DeauthenticateEx(byte roles)
Deauthenticates the specified roles.

roles: Bits mask of the roles identifiers to be deauthenticated. Multiple roles
deauthentication is possible using this method.

void ChangeAuthenticatorEx(byte mode, byte oldRole, byte[] oldPin,
byte newRole, byte[] newPin, int maxTries)

Changes the User PIN or Unblocks the User PIN, Admin Key, PIN#3, PIN#4, PIN#5,
PIN#6, PIN#7 or Access Manager Admin Key.

mode: 1 = Unblock, 2 = Change.

oldRole: User PIN, Admin Key, PIN#3, PIN#4, PIN#5, PIN#6, PIN#7 or Access
Manager Admin Key.

newRole: User PIN, Admin Key, PIN#3, PIN#4, PIN#5, PIN#6, PIN#7 or Access
Manager Admin Key.

Unblock (mode = 1):
■ oldRole: The role identifier to be verified to authorize the unblock command. By

default the unblock role is Admin Key (0x02) for all the PINs, it can be modified by
changing the PIN Info property (see SetCardProperty() method).

■ oldPin:

– If oldRole = Admin Key, it must be a valid response (8 bytes) of a challenge
obtained with GetChallengeEx(). This is the default case since PIN Info
property was not changed.

– If oldRole = User PIN or PIN#3 to PIN#7, it must be the current value of
oldRole session PIN.

■ newRole: The role identifier to be unblocked (User PIN or PIN#3 to PIN#7).

■ newPin: The new PIN value to be set for newRole PIN. PIN value can be 4 bytes
to 256 bytes long. The PIN value is in clear text.

You cannot use the command to unblock the Admin Key or Access Manager Admin
Key.

Change (mode = 2):
■ oldRole: The role identifier to be changed.

■ oldPin:

– If oldRole = Admin Key or Access Manager Admin Key, it must be a valid
response (8 bytes) of a challenge obtained with GetChallengeEx().

– If oldRole = User PIN or PIN#3 to PIN#7, it must be the current value of
oldRole session PIN.

■ newRole: is the role to changed. It must be the same role identifier than oldRole
(newRole = oldRole).

■ newPin:

– If newRole = Admin Key or Access Manager Admin Key, it must be a 24 bytes
3DES key value that will be the new Admin Key or Access Manager Admin
Key.

Caution: If you block the Admin Key or the Access Manager Admin Key, the card can
no longer be used.

Minidriver V6/V7 Methods 117
– If newRole = User PIN or PIN#3 to PIN#7, it must be the new PIN value of
newRole PIN. The new PIN value is encrypted using the session PIN.

In all cases maxTries is the new max tries counter for the changed/unblocked PIN/
Key. If maxTries = -1 it means that the current max tries counter is not modified.

If the Change/Unblock operation fails an exception is thrown.

Example Scenario to Change a PIN with ChangeAuthenticatorEx():
This scenario describes how to change a PIN with the ChangeAuthenticatorEx()
function. In this description ClearOldPin is the plaintext value of the old PIN and
ClearNewPin is the plaintext value of the new PIN:

Step 1: Compute Session PIN:

1 Call AuthenticateEx() with mode = 0x01 (Generate Session PIN) -> CardRnd

2 Generate a 3DES key = SHA1(ClearOldPin) || 00000000 -> 3DESKey

3 Decrypt the card random = 3DES_ECB_Decrypt(CardRnd, 3DESKey) ->
ClearCardRnd

4 Compute Session PIN = SHA1(ClearCardRnd || ClearOldPin) -> SessionPin

Step 2: Encrypt the new PIN:

1 Compute padded new clear PIN = PKCS#7(ClearNewPin) ->
PaddedClearNewPin

2 Encrypt the padded clear new PIN = 3DES_ECB_Encrypt(PaddedClearNewPin,
3DESKey) -> EncryptedNewPin

Step 3: Change the PIN:

1 Call CardChangeAuthenticatorEx() with oldPin = SessionPin and newPin =
EncryptedNewPin

118 IDPrime .NET Smart Card Integration Guide
Properties Management Methods

byte[] GetContainerProperty(byte ctrIndex, byte property, byte flags)
Gets a property of a key container.

ctrIndex: The container index to get property, from 0 to N (N = max number of
containers supported by the minidriver, 15 in current version).

property: The container property to get:

■ CONTAINER_INFO (0x00):

Returns a byte array blob containing the public key(s) in the selected container.

The returned blob is formatted as follows:

Blob = [Signature_Pub_Key] || [Exchange_Pub_Key]

Signature_Pub_Key and Exchange_Pub_Key are optional depending on which key
exists in the container and it's a sequence of 3 TLV formatted as follows:

T_Key_Type = 0x03

L_Key_Type = 0x01

V_Key_Type = 0x01 for Exchange_Pub_Key or 0x02 for Signature_Pub_Key

T_Key_Pub_Exp = 0x01

L_Key_Pub_Exp = 0x04

V_Key_Pub_Exp = Value of Public key Exponent on 4 bytes.

T_Key_Modulus = 0x02

L_Key_Modulus = Key_Size_Bytes >> 4 (1 byte !)

V_Key_Modulus = Value of Public key Modulus on Key_Size_Bytes bytes.

The 4-bit shift on L_Key_Modulus is to be able to pass the Modulus length on 1
byte for values 64 to 256 (512 bits to 2048 bits).

■ PIN_IDENTIFIER (0x01):

Returns a byte array of one byte that indicates the role (User PIN or PIN#3 to
PIN#7) that must be authenticated to use the keys in the container ctrIndex.

This command execution is free.

■ CONTAINER_TYPE (0x80):

Returns a byte array of two bytes that indicates if the keys in the container ctrIndex
were imported or generated on board.

The returned blob is formatted as follows:

blob[0] = 0x00 if signature key was imported, 0x01 if it was generated on board.

blob[1] = 0x00 if exchange key was imported, 0x01 if it was generated on board.

This command execution is free.

flags: RFU.

Minidriver V6/V7 Methods 119
byte[] SetContainerProperty(byte ctrIndex, byte property, byte[]
data, byte flags)

Sets a property of a key container.

ctrIndex: The container index to set property, from 0 to N (N = max number of
containers supported by the minidriver, 15 in current version).

property: The container property to set:

■ PIN_IDENTIFIER (0x01):

Sets the role (User PIN or PIN#3 to PIN#7) that must be authenticated to use the
keys in the container ctrIndex.

data: Must be a byte array of one byte that contains the role identifier to be associated
with the container. Admin Key role is not allowed.

The User PIN role or the Admin Key role must authenticated to authorize execution of
this method.

flags: RFU.

byte[] GetCardProperty(byte property, byte flags)
Gets a card property. This command execution is free.

property: The card property to get:

■ CARD_FREE_SPACE (0x00):

Returns a byte array blob of 12 bytes containing the free space information.

The returned blob is formatted as follows:

blob[0-3]: Free memory size (in bytes) on the card (big-endian).

blob[4-7]: Number of free containers on the card (big-endian).

blob[8-11]: Maximum number of containers on the card (big-endian).

■ CARD_KEY_SIZES (0x02):

Returns a byte array blob of 16 bytes containing the key sizes information.

The returned blob is formatted as follows:

blob[0-3]: Minimum key length (big-endian).

blob[4-7]: Default key length (big-endian).

blob[8-11]: Maximum key length (big-endian).

blob[12-15]: Increment key length (big-endian).

120 IDPrime .NET Smart Card Integration Guide
■ CARD_READ_ONLY (0x03):

Returns a byte array blob of 1 byte that indicates if card is read-only or not.

The returned blob is formatted as follows:

blob[0] = Read-only mode:

– 0x00 -> The card is read/write (default).

– 0x01 -> The card is read-only.

■ CARD_CACHE_MODE (0x04):

Returns a byte array blob of 1 byte that indicates if the card cache mode.

The returned blob is formatted as follows:

blob[0] = Cache mode :

– 0x01 -> Global cache mode (default).

– 0x02 -> Session cache mode.

– 0x03 -> No cache mode.

■ CARD_GUID (0x05):

Returns a byte array blob of 16 bytes that indicates the GUID (unique identifier) of
the card. This is the same value as the 'cardid' file content.

The returned blob is formatted as follows:

blob[0-15] = 16 bytes GUID (unique identifier).

By default the GUID is 0x2E4E4554 (4-byte fixed value || Card Serial Number (12
bytes)

■ CARD_SERIAL_NUMBER (0x06):

Returns a byte array blob of 12 bytes that indicates the Serial Number of the card.
This is the unique chip serial number.

The returned blob is formatted as follows:

blob[0-11] = 12 bytes Serial Number (unique identifier).

Minidriver V6/V7 Methods 121
■ CARD_PIN_INFO (0x07):

Returns a byte array blob of 12 bytes that indicates the PIN Information of a role.

The flags parameter indicates the role identifier (User PIN, Admin Key, PIN#3,
PIN#4, PIN#5, PIN#6 or PIN#7).

The returned blob is formatted as follows:

blob[0] = PIN Type:

– 0x00 -> Normal Alphanumeric PIN (default for User PIN and PIN#3 to PIN#7).

– 0x01 -> External PIN (used for Biometrics or Pinpad).

– 0x02 -> Challenge/Response PIN (Default for Admin Key).

– 0x03 -> No PIN (used for not protected keys).

blob[1] = PIN Purpose:

– 0x00 -> Authentication PIN.

– 0x01 -> Digital Signature PIN.

– 0x02 -> Encryption PIN.

– 0x03 -> Non repudiation PIN.

– 0x04 -> Admin PIN (default for Admin Key role).

– 0x05 -> Primary PIN (default for User PIN and PIN#3 to PIN#7 roles).

– 0x06 -> Unblock only.

blob[2] = Bits mask of roles identifier that permits unblock of the PIN. Default is
Admin Keys for all PIN roles.

blob[3] = PIN Cache type, it's used by the Base CSP to manage PIN caching:

– 0x00 -> Normal cache: the Base CSP maintains cache per application (default).

– 0x01 -> Timed cache: the PIN is invalidated in the cache after an indicated
period of time (value given in seconds).

– 0x02 -> No Cache: the Base CSP submits PIN to card but does not maintain a
cache. Subsequent operations must occur before Base CSP transaction time-
out occurs.

– 0x03 -> Always prompt: The Base CSP does not maintain a cache, but the
transaction time-out does not apply. Instead it prompts the user for the PIN
each time that it needs it.

blob[4-7] = Time period (in seconds) if PIN cache type is a timed cache (big-
endian).

blob[8-11] = RFU.

122 IDPrime .NET Smart Card Integration Guide
■ CARD_ROLES_LIST (0x08):

Returns a byte array blob of 1 byte that indicates the roles supported by the card.

The returned blob is formatted as follows:

blob[0] = Bits mask of supported roles identifiers. 0x7F in current version -> All
roles.

■ CARD_AUTHENTICATED_ROLES (0x09):

Returns a byte array blob of 1 byte that indicates the roles currently authenticated
by the card.

The returned blob is formatted as follows:

blob[0] = Bits mask of currently authenticated roles identifiers.

■ CARD_PIN_STRENGTH (0x0A):

Returns a byte array blob of 1 byte that indicates the PIN strength of a role.

The flags parameter must indicates the role identifier (User PIN, Admin Key,
PIN#3, PIN#4, PIN#5, PIN#6 or PIN#7).

The returned blob is formatted as follows:

blob[0] = Bits mask of PIN strength of the role:

– 0x01 -> Supports plaintext mode verification.

– 0x02 -> Supports session PIN mode verification.

■ CARD_X509_ENROLL (0x0D):

Returns a byte array blob of 1 byte that indicates if the card supports X509
certificates enrollment/renewal.

The returned blob is formatted as follows:

blob[0] = X509 certificates mode:

– 0x00 -> The card does not support X509 certificates enrollment.

– 0x01 -> The card supports X509 certificates enrollment (default).

■ CARD_UNBLOCK_FP_SYNC (0xF9):

Linked to “-u” installation parameter. Returns a byte array blob of 1 byte that
indicates if unblocking PIN authentication also unblocks FP authentication.

The returned blob is formatted as follows:

blob[0] = Unblocking PIN also unblocks FP:

– 0x00 -> The card does not support the feature (default).

– 0x01 -> The card supports the feature.

Minidriver V6/V7 Methods 123
■ CARD_PIN_POLICY (0x80):

Returns a byte array blob of 14 bytes that indicates the PIN Policy currently sets on
the card.

The returned blob is formatted as follows:

blob[0] = Maximum attempts before the PIN is blocked (1-255), default value is 5.

blob[1] = Minimum PIN length (4-255), default value is 4.

blob[2] = Maximum PIN length (4-255), default value is 255.

blob[3] = Authorized char set(s). This is a bits mask with the following char sets:

– 0x01 -> Numeric (0x30...0x39)

– 0x02 -> Alphabetic uppercase (0x41...0x5A)

– 0x04 -> Alphabetic lowercase (0x61...0x7A)

– 0x08 -> Non alphanumeric (0x20...0x2F + 0x3A...0x40 + 0x5B...0x60 +
0x7B...0x7F)

– 0x10 -> Non ASCII (0x80...0xFF)

– 0x20 -> Alphabetic all (0x41...0x5A + 0x61...0x7A)

blob[4] = Number of different characters that can be repeated at least once (0-255),
255 if no limitation (default). This is also known as complexity rule 1.

blob[5] = Maximum number of times a character can appear (1-255), 255 if no
limitation (default). This is also known as complexity rule 2.

blob[6] = Adjacent characters policy:

– 0x00 -> Repeated characters can't be adjacent.

– 0x01 -> Repeated characters can be adjacent (default).

blob[7] = Number of previous PIN values a new PIN can't match (0-10), 0 if no
history (default).

blob[8] = Unblock policy:

– 0x00 -> PIN unblock is not permitted.

– 0x01 -> PIN unblock is permitted (default).

Note: If “alphabetic all” (0x20) is selected, 0x02 and 0x04 are automatically disabled.

124 IDPrime .NET Smart Card Integration Guide
blob[9] = SSO policy:

– 0x00 -> PIN SSO is not activated (default).

– 0x01 -> PIN SSO is activated.

blob[10] = One character from each set usage policy:

– 0x00 -> Do not enforce PIN value composed with at least one character of each
char set (default).

– 0x01 -> Enforce PIN value composed with at least one character of each char
set.

blob[11] = Mandatory char set(s). This is a bits mask with the following char sets:

– 0x01 -> Numeric (0x30...0x39)

– 0x02 -> Alphabetic uppercase (0x41...0x5A)

– 0x04 -> Alphabetic lowercase (0x61...0x7A)

– 0x08 -> Non alphanumeric (0x20...0x2F + 0x3A...0x40 + 0x5B...0x60 +
0x7B...0x7F)

– 0x10 -> Non ASCII (0x80...0xFF)

– 0x20 -> Alphabetic all (0x41...0x5A + 0x61...0x7A)

– 0x1F -> All chars (0x20...0xFF) (default)

blob[12] = Maximum length of character sequences e.g., 1,2,3,4 or a,b,c,d. For
example, if set to 4, 1,2,3,4,a,5 is allowed, but 1,2,3,4,5,a is not allowed. Range is
1-255. Default is 255 (no limitation)

blob[13] = Maximum number of adjacent characters. Range is 1-255. Default is 255
(no limitation). This byte is ignored if adjacent characters policy is set to 00 (not
allowed). This value cannot exceed the value of complexity rule 2.

■ CARD_CHANGE_PIN_FIRST (0xFA):

Returns a byte array blob of 1 byte that indicates the status of the “Force PIN
change at first use” property.

The flags parameter indicates the role identifier (User PIN, PIN#3, PIN#4, PIN#5,
PIN#6 or PIN#7).

The returned blob is formatted as follows:

Note: The effect of activating SSO differs according to the Windows operating system.

Windows 7 and 8: If using the IDGo 800 CP, the user needs to present the user PIN
once only during a session (such as logging on) as long as the IDPrime .NET card is
not removed or reset. If the user is using the standard Microsoft CP, SSO is not
supported for smart card logon (but is supported for other operations, such as digital
signature).

Vista SP1 and later: The IDGo 800 CP is not available for Vista. If SSO is activated,
the IDGo 800 CP can be used with the standard Microsoft CP but not for smart card
logon.

XP and Vista (before SP1): SSO is not supported.

Note: If “alphabetic all” (0x20) is selected, 0x02 and 0x04 are automatically disabled.

Minidriver V6/V7 Methods 125
data[0] = Change PIN at first use mode:

– 0x00 -> Feature is not activated.

– 0x01 -> Feature is activated.

■ CARD_IMPORT_ALLOWED (0x90):

Linked to “-k” installation parameter. Returns a byte array blob of 1 byte that
indicates if RSA key injection is permitted or not.

The returned blob is formatted as follows:

blob[0] = Key injection allowed mode:

– 0x00 -> The card does not support RSA key injection.

– 0x01 -> The card supports RSA key injection (default).

■ CARD_IMPORT_CHANGE_ALLOWED (0x91):

Linked to “-l” installation parameter. Returns a byte array blob of 1 byte that
indicates if the CARD_IMPORT_ALLOWED property can be changed or not.

The returned blob is formatted as follows:

blob[0] = CARD_IMPORT_ALLOWED change mode:

– 0x00 -> CARD_IMPORT_ALLOWED property cannot be changed.

– 0x01 -> CARD_IMPORT_ALLOWED property can be changed (default).

■ CARD_DATA_EVERYONE (0xA0):

Returns a persistent byte array blob of the data requested. The data blob can be of
any length.

The flags parameter must indicate the data identifier (0-255). If the data identifier
doesn't exist an ArgumentException exception is thrown.

The byte array is one that has been written using the
SetCardProperty(CARD_DATA_EVERYONE) function. The command is
unprotected.

■ CARD_DATA_USER (0xA1):

Returns a persistent byte array blob of the data requested. The data blob can be of
any length.

The flags parameter must indicate the data identifier (0-255). If the data identifier
doesn't exist an ArgumentException exception is thrown.

The byte array is one that has been written using the
SetCardProperty(CARD_DATA_USER) function. The command is protected by
the User PIN role.

126 IDPrime .NET Smart Card Integration Guide
■ CARD_DATA_ADMIN (0xA2):

Returns a persistent byte array blob of the data requested. The data blob can be of
any length.

The flags parameter must indicate the data identifier (0-255). If the data identifier
doesn't exist an ArgumentException exception is thrown.

The byte array is one that has been written using the
SetCardProperty(CARD_DATA_ADMIN) function. The command is protected by
the Admin Key role.

■ CARD_PKI_OFF (0xF7):

Returns a byte array blob of 1 byte that indicates if the PKI mode is disabled or not.

The returned blob is formatted as follows:

blob[0] = PKI Off mode:

– 0x00 -> PKI Off is not activated (PKI is ON, default mode).

– 0x01 -> PKI Off is activated.

When PKI is off, the following limitations apply:

+ Not possible to generate or import a key container.

+ Not possible to delete a key container.

+ All containers are seen as empty and free.

+ PKI operations are not possible.

+ 'mscp' and 'p11' directories are seen as empty (no files in them).

+ Not possible to create 'mscp' and 'p11' directories.

+ Not possible to delete 'mscp' and 'p11' directories.

+ Not possible to create file in 'mscp' and 'p11' directories.

+ Not possible to delete file in 'mscp' and 'p11' directories.

+ 'cardcf' file is seen as empty (all bytes are 0x00).

+ Not possible to modify 'cardcf' file contents (write / delete).

■ CARD_VERSION_INFO (0xFF):

Returns a byte array blob of 4 bytes that indicates the exact version number of the
assembly.

The returned blob is formatted as follows:

blob[0-3] = 4 bytes Version Number.

Minidriver V6/V7 Methods 127
■ CARD_SECURE_AM (0xFB):

Linked to “-s” installation parameter. Returns a byte array blob of 1 byte that
indicates if the Card Access Manager Admin key is different from the standard
Admin Key.

The returned blob is formatted as follows:

blob[0] = Card Access Manager Admin Key different:

– 0x00 -> The Card Access Manager Admin Key is the same as the standard
Admin key (default).

– 0x01 -> The Card Access Manager Admin Key is different from the standard
Admin key (default).

byte[] SetCardProperty(byte property, byte[] data, byte flags)
Sets a card property.

The Admin Key role must be verified to authorize access to this command.

property: The card property to set:

■ CARD_READ_ONLY (0x03):

Sets the read-only mode of the card.

data: Must be a byte array of one byte that contains the read-only mode.

data[0] = Read-only mode:

– 0x00 -> The card must be read/write.

– 0x01 -> The card must be read-only.

■ CARD_CACHE_MODE (0x04):

Sets the card cache mode.

data: Must be a byte array of one byte that contains the card cache mode:

data[0] = Cache mode :

– 0x01 -> Global cache mode (default).

– 0x02 -> Session cache mode.

– 0x03 -> No cache mode.

128 IDPrime .NET Smart Card Integration Guide
■ CARD_GUID (0x05):

Sets the card GUID. The 'cardid' file content is automatically synchronized when
this property is changed.

data: Must be a byte array blob of 16 bytes that indicates the GUID of the card.

data[0-15] = 16 bytes GUID (unique identifier).

■ CARD_SERIAL_NUMBER (0x06):

Sets the card serial number.

data: Must be a byte array blob of 12 bytes that indicates the card serial number.

data[0-11] = 12-byte Serial Number (unique identifier).

■ CARD_PIN_INFO (0x07):

Sets the PIN Information of a role.

The flags parameter indicates the role identifier (User PIN, Admin Key, PIN#3,
PIN#4, PIN#5, PIN#6 or PIN#7).

data: Must be a byte array blob of 12 bytes that indicates the PIN Information of the
role.

data[0] = PIN Type:

– 0x00 -> Normal Alphanumeric PIN (default for User PIN and PIN#3 to PIN#7).

– 0x01 -> External PIN (used for Biometrics or Pinpad).

– 0x02 -> Challenge/Response PIN (Default for Admin Key).

– 0x03 -> No PIN (used for not protected keys).

data[1] = PIN Purpose:

– 0x00 -> Authentication PIN.

– 0x01 -> Digital Signature PIN.

– 0x02 -> Encryption PIN.

– 0x03 -> Non repudiation PIN.

– 0x04 -> Admin PIN (default for Admin Key role).

– 0x05 -> Primary PIN (default for User PIN and PIN#3 to PIN#7 roles).

– 0x06 -> Unblock only.

data[2] = Bits mask of roles identifier that permit unblock of the PIN. Default is
Admin Keys for all PIN roles.

Minidriver V6/V7 Methods 129
data[3] = PIN Cache type, it's used by the Base CSP to manage PIN caching:

– 0x00 -> Normal cache, the Base CSP maintains cache per application (default).

– 0x01 -> Timed cache: the PIN is invalidated in the cache after an indicated
period of time (value given in seconds).

– 0x02 -> No Cache: the Base CSP submits PIN to card but does not maintain a
cache. Subsequent operations must occur before Base CSP transaction time-
out occurs.

– 0x03 -> Always prompt: The Base CSP does not maintain a cache, but the
transaction time-out does not apply. Instead it prompts the user for the PIN
each time that it needs it.

data[4-7] = Time period (in seconds) if PIN cache type is a timed cache (big-
endian).

data[8-11] = RFU.

■ CARD_X509_ENROLL (0x0D):

Sets the support of X509 certificates enrollment/renewal property.

data: Must be a byte array blob of 1 byte that indicates if the card supports X509
certificates enrollment/renewal.

data[0] = X509 certificates mode:

– 0x00 -> The card not supports X509 certificates enrollment.

– 0x01 -> The card supports X509 certificates enrollment (default).

■ CARD_UNBLOCK_FP_SYNC (0xF9):

Linked to “-u” installation parameter. Receives a byte array blob of 1 byte that
indicates if unblocking PIN authentication also unblocks FP authentication.

The received blob is formatted as follows:

blob[0] = Unblocking PIN also unblocks FP:

– 0x00 -> The card does not support the feature (default).

– 0x01 -> The card supports the feature.

130 IDPrime .NET Smart Card Integration Guide
■ CARD_PIN_POLICY (0x80):

Sets the PIN Information of a role.

The flags parameter indicates the role identifier (User PIN, PIN#3, PIN#4, PIN#5,
PIN#6 or PIN#7). If set to 0x00, the policy applies to all PINs.

There are two ways of updating the PIN policy, described here as a) and b)

a) data is null.

To allow the replacement of the current PIN Policy on the card it's necessary to copy a text
file named 'PinPolicy.txt' in the 'D:\Pub\' directory of the .NET card file system before
executing this command. This file must contain the new PIN Policy to install on the card. The
file is automatically erased after execution of this command.

The 'PinPolicy.txt' file format must be as follows:

; PIN Policy description file for .NET MiniDriver
; This file must be located in D:\Pub\PinPolicy.txt
; For performance reasons it's recommended to remove comment lines before
copying file in the card.
; Comment lines begin with ';' character.

;MAX_ATTEMPTS range : 1...255
MAX_ATTEMPTS=5

;MIN_LENGTH range : 4...255
MIN_LENGTH=4

;MAX_LENGTH range : 4...255
MAX_LENGTH=255

;CHAR_SET values : Combination of
;01 : Numeric = 0x30...0x39
;02 : Alphabetic uppercase = 0x41...0x5A
;04 : Alphabetic lowercase = 0x61...0x7A
;08 : Non alphanumeric = 0x20...0x2F + 0x3A...0x40 + 0x5B...0x60 + ;
0x7B...0x7F
;10 : Non ASCII = 0x80...0xFF
;20 : Alphabetic All = 0x41...0x5A + 0x61...0x7A

; If "Alphabetic All" charset is selected, "Alphabetic uppercase" and
; "Alphabetic lowercase" charsets are automatically disabled during PIN
; policy setting.

CHAR_SET=1F

;COMPLEXITY_RULE_1 value : Number of different characters that can be
repeated at least once (255 if no limitation)
COMPLEXITY_RULE_1=255

;COMPLEXITY_RULE_2 value : Max number of times a character can appear (255
if no limitation)
COMPLEXITY_RULE_2=255

;ADJACENT_ALLOWED value : YES or NO. If NO, the PIN must not contain
repeated chars in adjacent positions.
ADJACENT_ALLOWED=YES

;HISTORY value : Number of previous PIN values a new PIN cannot match
HISTORY=0

Minidriver V6/V7 Methods 131
;ALLOW_UNBLOCK value : YES or NO. If NO, the PIN cannot be unblocked.
ALLOW_UNBLOCK=YES

;ALLOW_SSO value : YES or NO. If YES, the minidriver will implement a SSO
behavior (OS >= VISTA SP1 only).
ALLOW_SSO=NO

;ONE_OF_EACH_CHAR_SET value : YES or NO. If YES, the new PIN must contain at
least one character of each char set defined in CHAR_SET
ONE_OF_EACH_CHAR_SET=NO

;MANDATORY_CHAR_SET values : Combination of
;01 : Numeric = 0x30...0x39
;02 : Alphabetic uppercase = 0x41...0x5A
;04 : Alphabetic lowercase = 0x61...0x7A
;08 : Non alphanumeric = 0x20...0x2F + 0x3A...0x40 +
0x5B...0x60 + 0x7B...0x7F
;10 : Non ASCII = 0x80...0xFF
;20 : Alphabetic All = 0x41...0x5A + 0x61...0x7A

; If "Alphabetic All" charset is selected, "Alphabetic uppercase" and
"Alphabetic lowercase" charsets are automatically disabled during PIN
policy setting.

; It's not allowed to set a value different from '00' if
ONE_OF_EACH_CHAR_SET is set to YES.

; It's not allowed to set a charset that is not defined in the CHAR_SET
rule.

MANDATORY_CHAR_SET=00

;MAX_SEQUENCE_LEN value : Maximum length of a sequence of characters.
; 255 if no limitation.
MAX_SEQUENCE_LEN=255

;MAX_ADJACENT_NB value : Maximum number of times a character can be
repeated in adjacent positions.
; 255 if no limitation.
; Ignored if ADJACENT_ALLOWED is set to NO.
; Can't have a value greater than COMPLEXITY_RULE_2.
MAX_ADJACENT_NB=255

b) In the second method, data is a byte array blob of 14 bytes that indicates the
PIN Policy of the PIN role.

data[0] = MAX_ATTEMPTS

data[1] = MIN_LENGTH

data[2] = MAX_LENGTH

data[3] = CHAR_SET

data[4] = COMPLEXITY_RULE_1

data[5] = COMPLEXITY_RULE_2

data[6] = ADJACENT_ALLOWED

data[7] = HISTORY

132 IDPrime .NET Smart Card Integration Guide
data[8] = ALLOW_UNBLOCK

data[9] = ALLOW_SSO

data[10] = ONE_OF_EACH_CHAR_SET

data[11] = MANDATORY_CHAR_SET

data[12] = MAX_SEQUENCE_LEN

data[13] = MAX_ADJACENT_NB

Note: The effect of activating SSO differs according to the Windows operating system.

Windows 7 and 8: If using the IDGo 800 CP, the user needs to present the user PIN
once only during a session (such as logging on) as long as the IDPrime .NET card is
not removed or reset. If the user is using the standard Microsoft CP, SSO is not
supported for smart card logon (but is supported for other operations, such as digital
signature).

Vista SP1 and later: The IDGo 800 CP is not available for Vista. If SSO is activated,
the IDGo 800 CP can be used with the standard Microsoft CP but not for smart card
logon.

XP and Vista (before SP1): SSO is not supported.

NOTES About PIN Policies:

■ All PIN policy parameters are optional in the file and if a value is not present the
default value applies.

■ When a PIN policy is set, the card checks the consistency of parameters. The PIN
policy update fails if the file contains inconsistent parameters.

■ If a PIN Policy file is present on the card before Minidriver assembly installation, the
PIN policy description is applied to ALL PINs during installation.

■ If SetCardProperty(0x80, data, flags) is called with ‘flags’ parameter set to 0x00,
the new PIN policy is applied to all PINs.

■ If SetCardPoperty(0x80, data, flags) is called with ‘flags’ parameter set to 0x01,
0x03, 0x04, 0x05, 0x06 or 0x07, the new PIN policy is applied to the PIN role
whose ID corresponds to the ‘flags’ parameter value. No other values are
supported.

■ If SetCardPoperty(0x80, data, flags) is called with ‘data’ length = 0, the card tries to
apply a PIN policy from “D:\Pub\PinPolicy.txt” file.

■ If SetCardPoperty(0x80, data, flags) is called with ‘data’ length != 0, the card tries to
apply a PIN policy from the ‘data’ passed in the parameters.

■ If GetCardProperty(0x80, flags) is called with ‘flags’ parameter set to 0x00, the card
returns the PIN policy of default User PIN (Id = 0x01).

■ If GetCardPoperty(0x80, flags) is called with ‘flags’ parameter set to 0x01, 0x03,
0x04, 0x05, 0x06 or 0x07, the card returns the PIN policy of the PIN role whose ID
corresponds to the ‘flags’ parameter value. No other values are supported.

Minidriver V6/V7 Methods 133
■ CARD_CHANGE_PIN_FIRST (0xFA):

Sets the “Force PIN change at first use” property.

The flags parameter indicates the role identifier (User PIN, PIN#3, PIN#4, PIN#5,
PIN#6 or PIN#7).

data: Must be a one-byte value that indicates if the feature is activated or not.

data[0] = Change PIN at first use mode:

– 0x00 -> Feature is not activated.

– 0x01 -> Feature is activated.

■ CARD_PIN_CHECK (0x81):

This is not really a SetCardProperty command but a hook to test if a PIN is valid
regarding the PIN Policy for the specified role. An exception is thrown if the PIN is
not compliant with the PIN Policy:

The flags parameter indicates the role identifier (User PIN, PIN#3, PIN#4, PIN#5,
PIN#6 or PIN#7).

data: The PIN value to be checked.

case PinPolicy.ERR_PIN_TOO_SHORT:
throw new Exception("0xFFFF0001");

case PinPolicy.ERR_PIN_TOO_LONG:
throw new Exception("0xFFFF0002");

case PinPolicy.ERR_PIN_CHARSET:
throw new Exception("0xFFFF0003");

case PinPolicy.ERR_PIN_MANDATORY_CHARSET:
throw new Exception("0xFFFF0004");

case PinPolicy.ERR_PIN_COMPLEXITY_1:
throw new Exception("0xFFFF0005");

case PinPolicy.ERR_PIN_COMPLEXITY_2:
throw new Exception("0xFFFF0006");

case PinPolicy.ERR_PIN_ADJACENT:
throw new Exception("0xFFFF0007");

case PinPolicy.ERR_PIN_HISTORY:
throw new Exception("0xFFFF0008");

case PinPolicy.ERR_PIN_MAX_SEQUENCE:
throw new Exception("0xFFFF0009");

case PinPolicy.ERR_PIN_MAX_ADJACENT:
throw new Exception("0xFFFF000A");

Note: For this specific “property”, Admin Key role authentication is not required.

134 IDPrime .NET Smart Card Integration Guide
■ CARD_IMPORT_ALLOWED (0x90):

Linked to “-k” installation parameter. Receives a byte array blob of 1 byte that indicates
if RSA key injection is permitted or not.

The received blob is formatted as follows:

blob[0] = Key injection allowed mode:

0x00 -> The card does not support RSA key injection.

0x01 -> The card supports RSA key injection (default).

■ CARD_IMPORT_CHANGE_ALLOWED (0x91):

Linked to “-l” installation parameter. Receives a byte array blob of 1 byte that indicates
if the CARD_IMPORT_ALLOWED property can be changed or not.

The received blob is formatted as follows:

blob[0] = CARD_IMPORT_ALLOWED change mode:

0x00 -> CARD_IMPORT_ALLOWED property cannot be changed.

0x01 -> CARD_IMPORT_ALLOWED property can be changed (default).

■ CARD_DATA_EVERYONE (0xA0):

Sets a persistent byte array blob of data. The data blob can be of any length and is
written “as is”.

The flags parameter must indicate the data identifier (0-255). If the data identifier
already exists, it is overwritten with the new data.

The command is unprotected.

■ CARD_DATA_USER (0xA1):

Sets a persistent byte array blob of data. The data blob can be of any length and is
written “as is”.

The flags parameter must indicate the data identifier (0-255). If the data identifier
already exists, it is overwritten with the new data.

The command is protected by the User PIN role.

■ CARD_DATA_ADMIN (0xA2):

Sets a persistent byte array blob of data. The data blob can be of any length and is
written “as is”.

The flags parameter must indicate the data identifier (0-255). If the data identifier
already exists, it is overwritten with the new data.

The command is protected by the Admin Key role.

Minidriver V6/V7 Methods 135
■ CARD_PKI_OFF (0xF7):

Sets a byte array blob of 1 byte that indicates if the PKI mode is disabled or not.

The blob is formatted as follows:

blob[0] = PKI Off mode:

– 0x00 -> PKI Off is not activated (PKI is ON, default mode).

– 0x01 -> PKI Off is activated.

When PKI is off, the following limitations apply:

+ Not possible to generate or import a key container.

+ Not possible to delete a key container.

+ All containers are seen as empty and free.

+ PKI operations are not possible.

+ 'mscp' and 'p11' directories are seen as empty (no files in them).

+ Not possible to create 'mscp' and 'p11' directories.

+ Not possible to delete 'mscp' and 'p11' directories.

+ Not possible to create file in 'mscp' and 'p11' directories.

+ Not possible to delete file in 'mscp' and 'p11' directories.

+ 'cardcf' file is seen as empty (all bytes are 0x00).

+ Not possible to modify 'cardcf' file contents (write / delete).

■ CARD_ZAP_DATA (0xF8):

Destroys (zaps) set(s) of persistent data in the card.

The data is a byte array blob of one byte that represents a bit mask of the data to
be destroyed. The blob is formatted as follows:

blob[0] = Bit mask of data to be destroyed:

– 0x01 -> ZD_FILE_SYSTEM: Zap file system by restoring original Base CSP file
system.

– 0x02 -> ZD_CONTAINER: Zap contents of all containers so they become
empty.

– 0x04 -> ZD_PIN: Zap all PINs by restoring their initial values, properties and
PIN policies.

– 0x08 -> ZD_ADMIN: Zap Minidriver Admin key and Card Admin key if it exists;
original values are restored.

– 0x10 -> ZD_PROPERTY: Zap all MS standard data that can be modified
through properties; original values are restored.

– 0x20 -> ZD_BIO: Zap unblock FP on unblock PIN capabilty, original value is
restored.

– 0x40 -> ZD_DATA_STORAGE: Zap the “Everyone”, “User” and “Admin”
storage areas, i.e. those that can be filled using the
CARD_DATA_EVERYONE, CARD_DATA_USER and CARD_DATA_ADMIN
properties. All storage areas are cleared.

– 0x80 -> ZD_CUSTOM: Zap custom data.

– 0xFF -> All data sets.

P
artIII
APDU Encoding

13
APDU Encoding

Introduction
The services in .NET cards expose methods available to be called from external
applications. At the current stage of .NET card development APDUs provide the means
of transportation for these method calls. Each method call is encoded with its
arguments into one or more APDUs before being sent to the smart card. Part 3 of this
Integration Guide describes how to encode APDUs for a service method call.

Each service in a .NET card has a specific name (URI), an associated type (typeof) and
it listens on a specific port. Each method of a service has a specific name. The
arguments or parameters of the method are formed using the argument values.

All the above information is then encoded to form APDUs for a method call.

APDU Format
Here is the general structure of the APDU encoding for a method call:

APDU = APDU Header + APDU Payload

■ APDU Header = 80C20000 [APDU Payload length (1 byte)]

■ APDU Payload = [D8] [Service port number (2 bytes)] [6F] [Service Namespace
Hivecode (4 bytes)] [Service Type Hivecode (2 bytes]] [Method Hivecode (2 bytes)]
[Length of service name (2 bytes]] [UTF8 encoded Service name] [Encoded
Arguments]

For example, the card module service in a .NET card is named as “MSCM”, its port is
“0005”, its namespace hivecode is “00C04B4E” and its type hivecode is “7FBD”.

So the APDU for the method GetChallenge() which doesn't require any argument and
whose method hivecode is “FA3B” will be:

APDU = [80C20000 13] [D8] [Port (0005)] [6F] [namespace hivecode (00C04B4E)]
[type hivecode (7FBD)] [method hivecode (FA3B)] [service name length (0004)]
[service name - MSCM (4D53434D)]

Or

APDU = 80C20000 13 D8 0005 6F 00C04B4E 7FBD FA3B 0004 4D53434D

Note: Information on how to compute the hivecodes is given in “Chapter
14 - Hivecodes and Examples”.

138 IDPrime .NET Smart Card Integration Guide
Argument Encoding
Arguments are formed by concatenation of the encoded argument values. Each
argument value is encoded accordingly to its type as follows:

■ The value of a boolean or a byte is encoded in one byte.

■ The value of a character or an unsigned short is encoded in 2 bytes. The value of
an integer is encoded in 4 bytes. A long is encoded in 8 bytes. A string is formed by
concatenating the length of its UTF8 representation, as 2 bytes, followed by its
UTF8 representation. An array is formed by concatenating its length (number of
elements) in 4 bytes and then each element value encoded according to the
element type. For example, an array of 2 ushort [1, 2] will be encoded as:
“00000002 0001 0002" because ushort values are encoded in 2 bytes.

Table 1 shows the possible types and their encoding convention in .NET cards:

Note: “null” references for arrays are encoded using a length of “FFFFFFFF”. “null”
reference for strings are encoded using a UTF8 representation length of “FFFF”.

Table 15 - Argument Types and Their Encoding

Argument types Meaning
(.NET)

Encoding

MARSHALLER_TYPE_IN_BOOL boolean 1 byte
- true : 01
- false: 00

MARSHALLER_TYPE_IN_S1 sbyte 1 byte

MARSHALLER_TYPE_IN_U1 byte 1 byte

MARSHALLER_TYPE_IN_CHAR char 2 bytes

MARSHALLER_TYPE_IN_S2 short 2 bytes

MARSHALLER_TYPE_IN_U2 ushort 2 bytes

MARSHALLER_TYPE_IN_S4 Int32 (int) 4 bytes

MARSHALLER_TYPE_IN_U4 UInt32 (uint) 4 bytes

MARSHALLER_TYPE_IN_S8 Int64 (long) 8 bytes

MARSHALLER_TYPE_IN_U8 UInt64 (ulong) 8 bytes

MARSHALLER_TYPE_IN_STRING string [length (2 bytes)]
+ UTF8 encoded string
- for null string, length is FFFF

MARSHALLER_TYPE_IN_BOOLARRAY Array of
boolean

[length (4 bytes)] +
[values (1 byte each)]

MARSHALLER_TYPE_IN_S1ARRAY Array of sbyte [length (4 bytes)] +
[values (1 byte each)]

MARSHALLER_TYPE_IN_U1ARRAY Array of byte [length (4 bytes)] +
[values (1 byte each)]

MARSHALLER_TYPE_IN_MEMORYSTREAM Memorystream
- the same as
Array of byte

[length (4 bytes)] +
[values (1 byte each)]

MARSHALLER_TYPE_IN_CHARARRAY Array of chars [length (4 bytes)] +
[values (2 bytes each)]

APDU Encoding 139
Payload with length > FF
After forming the method call, if the APDU Payload is longer than the maximum
conventional APDU payload length (FF - ISO7816-4 short APDU) then the payload is
sent in sections (=< FF) to the smart card, and the smart card internally reconstructs
the original payload.

Each section is used to form a new “sub”-payload. The sub-payload is formatted as
follows:

Payload of each new APDU for the first section =

D8 FFFF [total length (4 bytes)] [section length (4 bytes)] [section data]

Payload of each new APDU for a following section =

D8 FFFF [offset (4 bytes)] [section length (4 bytes)] [section data]

For example if we have the following original payload (after section 1 formatting) with
total length of W bytes (>FF) - where X + Y + Z = W

We will divide W into 3 sections, such that X, Y and Z are all <= 244 bytes.

The payload of the first section (length X) is:

Payload-1 = D8 FFFF || [W (4 bytes)] || [X length (4 bytes)] || [X data bytes]

The payload of the second section (length Y) is:

Payload-2 = D8 FFFF || [Offset = X length (4 bytes)] || [Y length (4 bytes)] || [Y data
bytes]

(The offset is marks the start of the second section and is therefore the length of X)

The payload of the third section (length z) will be:

Payload-3 = D8 FFFF || [Offset = X length + Y length (4 bytes)] || [Z length (4 bytes)] ||
[Z data bytes]

MARSHALLER_TYPE_IN_S2ARRAY Array of short [length (4 bytes)] +
[values (2 bytes each)]

MARSHALLER_TYPE_IN_U2ARRAY Array of ushort [length (4 bytes)] +
[values (2 bytes each)]

MARSHALLER_TYPE_IN_S4ARRAY Array of Int32 [length (4 bytes)] +
[values (4 bytes each)]

MARSHALLER_TYPE_IN_U4ARRAY Array of UInt32 [length (4 bytes)] +
[values (4 bytes each)]

MARSHALLER_TYPE_IN_STRINGARRAY Array of string [length (4 bytes)] +
[each element is encoded as a
string as defined in
MARSHALLER_TYPE_IN_STR
ING]

Null value null - FFFF for string
- FFFFFFFF for other array
type

Table 15 - Argument Types and Their Encoding (continued)

Argument types Meaning
(.NET)

Encoding

X bytes Y bytes Z bytes

140 IDPrime .NET Smart Card Integration Guide
(The offset is marks the start of the third section and is therefore the length of X + the
length of Y)

The total payload of the first section (Payload-1) is:

1 (D8) + 2 (FFFF) + 4 (W) + 4 (X) + X <= FF.

i.e. X <= (FF - 1 + 2 + 4 + 4), or X <= F4.

Y and Z must respect the same formula.

The APDU headers for these sub-sections are identical:

80C20000 [Payload-1 length in 1 byte] [Payload-1]

80C20000 [Payload-2 length in 1 byte] [Payload-2]

80C20000 [Payload-3 length in 1 byte] [Payload-3]

MSCM Answer Interpretation
For compatibility reasons, the Microsoft Card Module service (MSCM) differs from
other services when it comes to the card answer protocol. This section details
interactions with the MSCM service only. For interactions with other services (Content
Manager, OATH, etc…) refer to the “Generic Answer Formation for .NET Card
Services (Except MSCM)” on page 141.

The MSCM service formats the answer for each method call as follows:

[Namespace hivecode of exception or return type (4 bytes)] || [Type hivecode of
exception or return type (2 bytes)] || [Data]

Where:

If exception:

Data = [optional UTF8 encoded exception message]

If no exception:

Data = [encoded return value]

In “Chapter 14 - Hivecodes and Examples” you will find all the namespace hivecodes
and type hivecodes for all MSCM exception and return types.

The APDUs Exchange Flow
The external application communicates with the service inside the card using the
following procedure:

1 The external application sends an APDU representing a method call to a certain
service in the card

2 The card responses with a status word. This status word may be:

– 0x9000: good - no data returned
– 0x61xx: there are xx bytes of data to be returned by the card.

3 In case of 61xx - the external application needs to send a GetResponse APDU
command: 00 C0 00 00 xx to the card to retrieve the data. If the card answers with
the 61xx status word, the application needs to repeat the GetResponse APDU and
concatenate the obtained data with the previous ones. The process is repeated
until a 9000 status word is received.

4 The data may represent an exception or a nominal method call return answer.

14
Hivecodes and Examples

Generic Answer Formation for .NET Card Services
(Except MSCM)

The answer for each method call to a service is formed according to the following
convention:

Answer = [Status (1 byte)] || [Data]

Where:

Status = 01 if everything is ok - method calls successful

 = FF if there is an exception

– If exception

Data = [Namespace hivecode of the exception] [Type hivecode of exception]
[optional UTF8 encoded exception message]

– If no exception (all ok)

Data = [encoded return value] || [encoded reference parameters values]*

In the case of “no exception”, the return and reference parameter values are encoded
according to their argument types as given in “Table 15” on page 138. The order is:

1 the method return value

2 the ref/out parameters in the order of declaration of the method prototype.

Computing Hivecodes
Hivecodes are computed by applying an MD5 hash to a particular string.

Namespace Hivecode
Namespace string consists of:

[Public Key Token] || ["."] || [Type namespace].

For example, the Namespace string for a namespace called “Company.Stuff” of an
assembly having a public key token being 42AA56EAF12382CE would be:

"42AA56EAF12382CE.Company.Stuff".

The corresponding hivecode would be the last 4 bytes of
MD5(“42AA56EAF12382CE.Company.Stuff”).

142 IDPrime .NET Smart Card Integration Guide
Type Hivecode
Type string consists of:

[Type Name].

For example, the Type string for a type called Company.Stuff.MyClass would be:
“MyClass”.

The corresponding hivecode would be the last 2 bytes of MD5(“MyClass”).

Method Hivecode
Method string consists of:

[Fully qualified Method Name].

For example, the Method string for a method called “void Foo(byte b, ref int I, out
short[] sarray)" would be

“System.Void Foo(System.Byte,System.Int32,System.Int16[])”.

The corresponding hivecode would be the last 2 bytes of

MD5(“System.Void Foo(System.Byte,System.Int32,System.Int16[])”).

MSCM Method Hivecodes

The card access role is a byte (1 byte) with the following values:

■ USER = 0x01

■ ADMIN = 0x02

■ EVERYONE = 0x03

The access condition list (ACL) is a 3-byte array (3 bytes) that determines the access
rights for the three roles in the following format:

Admin rights || User rights || Everyone rights.

Each byte in the array codes the associated rights for the corresponding card access
role. It is encoded using the following flags (which can be OR-ed):

■ EXECUTE = 0x01

■ WRITE = 0x02

■ READ = 0x04

For example: ACLs = {0x06, 0x06, 0x04} represents:

Admin rights = Read/Write, User rights = Read/Write, and Everyone’s rights = Read.

Note: If referring to an array of type, the array information should be ignored, i.e.
“MyClass[]” would become “MyClass”

Note: Please refer to the minidriver standard document of Microsoft for a description
of the method specification.

Hivecodes and Examples 143
The Hivecodes differ according to the version of the Microsoft specification. The
hivecodes for the methods in V5 of the Microsoft specification (described in “Chapter
11 - Minidriver V5 Methods”) are given in “Table 16”.

Table 16 - Hivecodes for V5

Method info
(name, return type, arguments)

Method
Hivecode

Meaning

byte[] GetChallenge() FA3B Cf. Microsoft minidriver
standard document

void ExternalAuthenticate(byte[] response) 24FE Response: cryptogram
generated from challenge using
Admin key.

void ExternalAuthenticateAM(byte[] response) 7E25 Response: cryptogram
generated from challenge using
Access Manager Admin Key.

void ChangeReferenceData(byte mode, byte role,
byte[] oldPin, byte[] newPin, int maxTries)

E08A To change the user PIN, Admin
Key or Access Manager Admin
Key.
To unblock the user PIN.
■ mode:

- CHANGE=0
- UNBLOCK=1

■ role:
- USER=1
- ADMIN=2
- ACCESS MANAGER

ADMIN KEY = 128 (0x80)
■ oldPin:

- the old value (CHANGE)
- the cryptogram

(UNBLOCK)
■ newPin:

- the new value (CHANGE)
- the new value (UNBLOCK)

■ maxTries: maximum retries.
Use -1 to use the PINs
default max retries value.

void VerifyPin(byte role, byte[] oldPin) 506B

int GetTriesRemaining(byte role) 6D08

void CreateCAPIContainer(byte ctrIndex, bool
keyImport, byte keySpec, int keySize, byte[]
keyValue)

0234

void DeleteCAPIContainer(byte ctrIndex) F152

byte[] GetCAPIContainer(byte ctrIndex) 9B2E

byte[] PrivateKeyDecrypt(byte ctrIndex, byte
keyType, byte[] encryptedData)

6144

int[] QueryFreeSpace() 00E5

int[] QueryKeySizes() 5EE4

void CreateFile(string path, byte[] acls, int
initialSize)

BEF1

void CreateDirectory(string path, byte[] acls) ACE9

144 IDPrime .NET Smart Card Integration Guide
The hivecodes for the methods in V6 and V7 of the Microsoft specification (described in
“Chapter 12 - Minidriver V6/V7 Methods”) are given in “Table 17”.

Namespace Hivecodes
System = 00D25D1C

System.IO = 00D5E6DB

System.Runtime.Remoting.Channels = 0000886E

void WriteFile(string path, byte[] data) F20E

byte[] ReadFile(string path, int maxBytesToRead) 744C

void DeleteFile(string path) 6E2B

void DeleteDirectory(string path) 9135

string[] GetFiles(string path) E72B

byte[] GetFileProperties(string path) A01B

void LogOut(byte role) C4E4

bool IsAuthenticated(byte role) 9B0B

byte MaxPinRetryCounter {get;} FEAB

bool AdminPersonalized {get;} CFBE

bool UserPersonalized {get;} E710

string get_Version() DEEC

Table 17 - Hivecodes for V6/V7

Method info
(name, return type, arguments)

Method
Hivecode

Meaning

 byte[] GetChallengeEx(byte role) 8F0B

byte[] AuthenticateEx(byte mode, byte role, byte[]
pin)

5177

void DeauthenticateEx(byte roles) BD7B

void ChangeAuthenticatorEx(byte mode, byte
oldRole, byte[] oldPin, byte newRole, byte[] newPin,
int maxTries)

9967

byte[] GetContainerProperty(byte ctrIndex, byte
property, byte flags)

279C

 byte[] SetContainerProperty(byte ctrIndex, byte
property, byte[] data, byte flags)

98D1

byte[] GetCardProperty(byte property, byte flags) 8187

 byte[] SetCardProperty(byte property, byte[] data,
byte flags)

B0E4

public void ForceGarbageCollector () 3D38 Forces garbage collector to
start.

Table 16 - Hivecodes for V5 (continued)

Method info
(name, return type, arguments)

Method
Hivecode

Meaning

Hivecodes and Examples 145
System.Runtime.Remoting = 00EB3DD9

System.Security.Cryptography = 00ACF53B

System.Collections = 00C5A010

System.Runtime.Remoting.Contexts = 001F4994

System.Security = 00964145

System.Reflection = 0008750F

System.Runtime.remoting.Messaging = 00DEB940

System.Diagnostics = 0097995F

System.Runtime.CompilerServices = 00F63E11

System.Text = 00702756

SmartCard = 00F5EFBF

Standard Type Hivecodes
System.Void = CE81

System.Int32 = 61C0

System.Int32[] = 61C1

System.Boolean = 2227

System.Boolean[] = 2228

System.SByte = 767E

System.SByte[] = 767F

System.UInt16 = D98B

System.UInt16[] = D98C

System.UInt32 = 95E7

System.UInt32[] = 95E8

System.Byte = 45A2

System.Byte[] = 45A3

System.Char = 958E

System.Char[] = 958F

System.Int16 = BC39

System.Int16[] = BC3A

System.String = 1127

System.String[] = 1128

System.Int64 = DEFB

System.Int64[] = DEFC

System.UInt64 = 71AF

System.UInt64[] = 71B0

System.IO.MemoryStream = FED7

Exception Type Hivecodes
System.Exception = D4B0

146 IDPrime .NET Smart Card Integration Guide
System.SystemException = 28AC

System.OutOfMemoryException = E14E

System.ArgumentException = AB8C

System.ArgumentNullException = 2138

System.NullReferenceException = C5B8

System.ArgumentOutOfRangeException = 6B11

System.NotSupportedException = AA74

System.InvalidCastException = D24F

System.InvalidOperationException = FAB4

System.NotImplementedException = 3CE5

System.ObjectDisposed Exception = 0FAC

System.UnauthorizedAccessException = 4697

System.IndexOutOfRangeException = BF1D

System.FormatException = F3BF

System.ArithmeticException = 6683

System.OverflowException = 20A0

System.BadImageFormatException = 530A

System.ApplicationException = B1EA

System.ArrayTypeMismatchException = 3F88

System.DivideByZeroException = DFCF

System.MemberAccessException = F5F3

System.MissingMemberException = 20BB

System.MissingFieldException = 7366

System.MissingMethodException = 905B

System.RankException = B2AE

System.StackOverflowException = 0844

System.TypeLoadException = 048E

System.IO.IOException = 3BBE

System.IO.DirectoryNotFoundException = 975A

System.IO.FileNotFoundException = 07EB

System.Runtime.Remoting.RemotingException = D52A

System.Security.Cryptography.CryptographicException = 8FEB

Other Useful Type Hivecodes
SmartCard.ContentManager = B18C

Other Useful Method Hivecodes
SmartCard.ContentManager.GetAssociatedPort = 7616

Hivecodes and Examples 147
APDUs Exchange Examples
This section provides some examples of the APDU exchanges with the MSCM service.

The important information for the MSCM service is:

■ Service name is “MSCM”,

■ Port is “0005”,

■ Namespace hivecode is “00C04B4E”

■ Type hivecode is “7FBD”.

A typical scenario is to authenticate the Admin role as follows:

1 Issue a Get Challenge APDU to generate an 8-byte random number

2 Issue a Get Response APDU to retrieve the 8-byte challenge

3 Issue an External Authenticate APDU to authenticate the Admin role (the 8-byte
challenge is used as part of this command).

4 Issue a Log Out APDU command to log out as the Admin role.

Here are example commands for this scenario:

Get Challenge
The APDU for the method byte[] GetChallenge() which doesn't require any argument
and whose method hivecode is “FA3B” is:

APDU = [80C20000 13] [D8] [Port (0005)] [6F] [namespace hivecode (00C04B4E)]
[type hivecode (7FBD)] [method hivecode (FA3B)] [service name length (0004)]
[service name - MSCM (4D53434D)]

Or

APDU = 80C20000 12 D8 0005 6F 00C04B4E 7FBD FA3B 0004 4D53434D

The status word for this APDU is 6112

Get Response
The APDU command to get the data is:

00C0000012

The on-card MSCM service answers with:

00D25D1C 45A3 00000008D90B49AA6690E797

Analysis of the Response
00D25D1C is the namespace hivecode => System

45A3 is the type hivecode => System.Byte[].

This means that the GetChallenge() method successfully executed and it returned a
byte array.

The “Argument encoding” section (page 138) shows that a byte array is encoded as
follows:

[array length (4 bytes)][values of each byte]

So the length of the returned byte array is: 00000008 or 8 bytes.

The remaining data (D90B49AA6690E797) are the 8 bytes of the card challenge.

148 IDPrime .NET Smart Card Integration Guide
External Authenticate
After calculating the card response (for example, the cryptogram value
BC287ED3692474A9) we need to use the method void ExternalAuthenticate(byte[]
response) to send the cryptogram to the card in order to authenticate the Admin role.

The ExternalAuthenticate() method hivecode is 24FE and we need to encode the
response parameter or cryptogram (BC287ED3692474A9) as a byte array of length 8.

So the APDU for the ExternalAuthenticate() method is:

APDU = 80C20000 1E D8 0005 6F 00C04B4E 7FBD 24FE 0004 4D53434D
00000008 BC287ED3692474A9

If the card accepts the cryptogram then it returns 9000 (No data is expected as the
method returns “void”) else it returns 61xx and an exception is encoded in the answer.

Log Out
If we want to log-out the Admin role, we need to execute the LogOut() method.

The void LogOut(byte role) method hivecode is C4E4 and since we want to log-out
the Admin role, the parameter value is 02. The resulting APDU is:

80C20000 13 D8 0005 6F 00C04B4E 7FBD C4E4 0004 4D53434D 02

Since the method returns “void”, no data is expected, hence a proper execution would
return directly with the status word 9000.

P
artIV
Configuring Parameters

15
Configuring Parameters

Introduction
There are two main ways of configuring parameters in Gemalto’s .NET cards.

■ From V6 of the Microsoft specification, certain parameters can be configured in the
card by using the SetCardProperty method, defined on page 127. Similarly, the
values of certain parameters can be read using the GetCardProperty method,
defined on page 119.

■ Certain parameters can be configured by loading the card module assembly and
executing it by specifying the parameters you want to change from their defaults.

This chapter lists the parameters that can be configured using either or both of these
two ways.

Configurable Parameters (.NET Minidriver Assembly)

Using SetCardProperty
The following table lists the properties defined in the Microsoft specification that can be
configured in the card module assembly using the SetCardProperty method along
with their default values and other information.

Note: It is also possible to configure the Maximum Communication Speed and the
Chip Speed by using the Card Explorer. This is explained in “Configuring the
Communication and Chip Speed” on page 61.

Note: Those that are marked as READ ONLY cannot be modified (you cannot use
SetCardProperty) but their values can be retrieved using the GetCardProperty
method.

Table 18 - Microsoft Defined Minidriver Parameters

Parameter Possible values Default value Comments

CARD_FREE_SPACE (12 bytes) READ ONLY

Size of Free Memory in
bytes (4 bytes)

Any N/A

Number of free containers
in the card (4 bytes)

Any N/A

Configuring Parameters 151
Maximum number of
containers allowed in the
card (4 bytes)

Any N/A

CARD_KEY_SIZES (16 bytes) READ ONLY

Minimum Key Length (in
bits) (4 bytes)

Any 512 bits

Default Key Length (in bits)
(4 bytes)

Any 1,024 bits

Maximum Key Length (in
bits) (4 bytes)

Any 2, 048 bits

Increment Key Length (in
bits) (4 bytes)

Any 256 bits

CARD_READ_ONLY (1 byte)

Read/Write (R/W)
Read Only (RO)

R/W Determines if card is read-only or not

CARD_CACHE_MODE (1 byte)

Global cache
Session cache
No cache

Global Indicates the cache mode

CARD_GUID (16 bytes)

Any None Unique Identifier

CARD_SERIAL_NUMBER (12 bytes)

Any None Unique Identifier Card serial number =
chip serial number

CARD_PIN_INFO (12 bytes)

PIN Type (1 byte) ■ Normal Alphanumeric
PIN

■ External PIN (for
Biometrics or PinPad).

■ Challenge/Response
PIN

■ No PIN (used for
unprotected keys)

■ Normal for User
PIN and PINs
#3 to #7

■ Chal/Resp for
Admin Key

If the IDPrime .NET card is configured
as External PIN, the IDGo 500
PKCS#11 libraries allows only the use
of a PIN pad reader for verifying the
PIN, and not a standard PC/SC reader
without keypad

PIN Purpose (1 byte) ■ Authentication
■ Digital Signature
■ Encryption
■ Non repudiation
■ Admin
■ Primary
■ Unblock only

■ Admin for
Admin Key

■ Primary for
others

Bit Mask (roles identifier) (1
byte)

Any defined in
CARD_ROLES_LIST

Admin Key Defines roles that can unblock the PIN

Table 18 - Microsoft Defined Minidriver Parameters (continued)

Parameter Possible values Default value Comments

152 IDPrime .NET Smart Card Integration Guide
PIN Policy and Other Gemalto Proprietary Parameters
In addition, Gemalto has defined a proprietary parameter for the PIN policy, which can
use these same SetCardProperty and GetCardProperty methods.

If you have the IDGo 800 CP, your IDPrime .NET cards can support up to 7 PIN roles
(the Admin Key role and 6 User PIN roles). Each of the 6 User PIN roles has its own
PIN with its own PIN Policy. The roles are defined in the Microsoft Minidriver spec (the
CARD_ROLES_LIST parameter in “Table 18”.

The following table shows the information for the proprietary PIN Policy and other
Gemalto proprietary properties.

PIN cache type (1 byte) ■ Normal, one cache per
application

■ Timed cache, Base CSP
empties its cache after a
time period

■ No Cache
■ Always prompt

Normal Cache is maintained by the Base CSP
This parameter is not managed if the
SSO parameter is set to Yes.
It is compliant with Base CSP / MD v6
(Vista) and above.
For more detials, please see page 121.

Time Period (in seconds) (4
bytes)

Any N/A Used if PIN cache type is timed cache
Compliant with Base CSP / MD v6
(Vista) and above.

RFU (4 bytes)

CARD_ROLES_LIST (1 byte) READ ONLY

Bit Mask (roles identifier) (1
byte)

Any combination 0x7F - All Roles These are the roles supported by the
card. They are User PIN, Admin Key,
PIN#3 — PIN#7)

CARD_AUTHENTICATED_ROLES (1 byte) READ ONLY

Bit Mask (roles identifier) (1
byte)

Any combination N/A Stores the roles currently authenticated
by the card

CARD_PIN_STRENGTH (1 byte) READ ONLY

Bit Mask of PIN strengths
of role

Supports plaintext mode
verification
Supports session PIN
mode verification

Both modes are
set

CARD_X509_ENROLL (1 byte)

Does not support X509
Certificates enrollment
Supports X509 Certificates
enrollment

X509 supported

Table 18 - Microsoft Defined Minidriver Parameters (continued)

Parameter Possible values Default value Comments

Configuring Parameters 153
Table 19 - Gemalto Proprietary Parameters

Parameter Possible values Default
value

Comments

CARD_PIN_POLICY (14 bytes)

Max # attempts PIN
verification (1 byte)

1-16 5 The maximum number of attempts allowed for Unblock /
Change PIN commands. The PIN’s max attempts
counter is initialized to this value and decremented with
each incorrect attempt. It is blocked when the PIN max
attempts counter reaches 0.

Min. PIN Length (1
byte)

4-255 4

Max PIN Length (1
byte)

4-255 255 (0xFF)

PIN character set (1
byte)

Any combination.
Each bit represents
one character set.
example, 0x07
represents the first
three character
sets

1Fh Authorized character sets for the PIN.
0x01: Numeric (0-9) ASCII 0x30-0x39
0x02:Alphabetic uppercase (A-Z) ASCII 0x41-0x5A
0x04: Alphabetic lowercase (a-z) ASCII 0x61-0x7A
0x08: Non alphanumeric ASCII 0x20-0x2F, 0x3A-0x40,
0x5B-0x60, 0x7B-0x7F
0x10: Extended characters (non ASCII): ASCII 0x80-0xFF
0x20 All alphabetic characters: ASCII 0x41-0x5A and
0x61-0x7A (A to Z, a to z): If selected, 0x02 and 0x04 are
disabled
You can combine these to give for example:
0x1F: All characters not case sensitive: ASCII 0x20-0xFF
0x1D: All characters case sensitive (alphabetic must be
lowercase): ASCII 0x20-0x40 + 0x5B-0xFF

PIN Complexity Rule
1: Number of
different characters
that can be repeated
at least once (1 byte)

0-255 255 (0xFF -
no limitation)

Example, 01 means one character can be repeated but
you cannot specify which one.

PIN Complexity Rule
2: Maximum number
of times a character
can appear (1 byte)

1-255 255 (0xFF -
no limitation)

Note: You cannot specify which characters.

Adjacent repeats
allowed

Yes, No Yes Indicates if repeated characters can be adjacent

PIN History 0..10 0 Number of previous PIN values a new PIN cannot match

Allow unblock Yes, No Yes Defines if it is possible to unblock a PIN

154 IDPrime .NET Smart Card Integration Guide
SSO Yes, No No Cached for all applications. The effect of activating SSO
differs according to the Windows operating system.
Windows 7 and 8:
■ If using the IDGo 800 CP, the user needs to present the

user PIN once only during a session (such as logging
on) as long as the IDPrime .NET card is not removed or
reset.

■ If the user is using the standard Microsoft CP, SSO is
not supported for smart card logon but is supported for
other operations, such as digital signature). For
example, the user must type his/her PIN when logging
on, and then retype it a second time when the first
application requires an authentication. After that, no
further PIN entries will be required during the same
session

Vista SP1 and later: The IDGo 800 CP is not available for
Vista. If SSO is activated, the IDGo 800 CP can be used
with the standard Microsoft CP but not for smart card
logon.
XP and Vista (before SP1): SSO is not supported.

PIN: One character
from each character
set

Yes, No No If set, the PIN must contain at least one character from
each of the sets defined in “PIN Character Set”

Mandatory character
set

Subset of the “PIN
character set”
parameter
Ex: 0x03 if PIN
character set =
0x07

0x00 (no
Mandatory
char. set)

The PIN must contain at least one character from each
character set of this list. The characters which are not part
of this list are allowed, if they are part of the PIN character
set list.
This parameter can be set to a non 0x00 value only if the
previous “One character from each character set”
parameter is set to “No”.
Example with:
■ “PIN character set” = 0x0F
■ “One character from each character set” = No
■ “Mandatory character set” = 0x07
1abcE and 1abcE@> are allowed PIN values
1abcE@>é and 1abcde are not allowed PIN values

Max. sequence of
characters

1-255 255 (0xFF) The number of times that a sequence of characters is
allowed, for example 1,2,3,4,5,6...
Example with this parameter is set to 4:
1234c5 and abcd1e are allowed PIN values
12345c and abcde1 are not allowed PIN values

Max. # adjacent
characters

1-255 255 (0xFF) The number of times that a character can be repeated in
adjacent positions. Ignored if adjacent repeats allowed is
set to no. This value cannot exceed PIN complexity rule 2.
Example with this parameter set to 4:
1111c1 and aaaa1a are allowed PIN values
11111c and aaaaa1 are not allowed PIN values

CARD_PIN_CHECK (Var. bytes)

PIN value Checks the PIN value’s validity against the PIN policy for
the specified role.
Can be used with SetCardProperty but not
GetCardProperty.

Table 19 - Gemalto Proprietary Parameters (continued)

Parameter Possible values Default
value

Comments

Configuring Parameters 155
Using Installation Parameters
The following parameters can be determined by the second method (executing the
card module assembly with parameter values)

CARD_IMPORT_ALLOWED (1 byte)

Key Injection
allowed

0: No
1: Yes

1: Yes Linked to “-k” installation parameter.
Can be used with SetCardProperty and GetCardProperty

CARD_IMPORT_CHANGE_ALLOWED (1 byte)

Card Import Allowed
property can be
changed or not

0: No
1: Yes

1: Yes Linked to “-l” installation parameter.
Can be used with SetCardProperty and GetCardProperty

CARD_VERSION_INFO (4 bytes)

Card module
assembly version
number

Returned by GetCardProperty.
Cannot be set with SetCardProperty

CARD_SECURE_AM (1 byte)

Access Manager
Admin Key

0: No
1: Yes

0: No Linked to “-s” installation parameter. Returned by
GetCardProperty. Indicates if Access Manager Admin key
is different from the standard Admin Key.

CARD_UNBLOCK-FP_SYNC (1 byte)

Unblock PIN also
unblocks FP
authentication

0: No
1: Yes

0: No Linked to “-u” installation parameter.
Can be used with SetCardProperty and GetCardProperty.

Table 19 - Gemalto Proprietary Parameters (continued)

Parameter Possible values Default
value

Comments

Table 20 - Installation Parameters

Parameter Description Possible values Default value Sample

-i Creates the file system required
by the Microsoft Base Smart
Card CSP.

None This parameter is optional
since the v7.1 version of
the MiniDriver assembly
and required for lower
versions.

-i

-r Creates a read only MiniDriver. None The smart card is read/
write.

-r (to create read-
only)

-s Activates an Access Manager
(AM) administrator key different
from the MiniDriver (MD)
administrator key.

None If absent: AM and MD keys
are the same (default = 24
X 00...00)
If present: AM key =
(default = 24 X FF...FF);
MD key = (default = 24 X
00...00)

-s

-c Sets the size (in bytes) of the
challenge.

Value multiple of 8
bytes

8 bytes -c:16

156 IDPrime .NET Smart Card Integration Guide
The -r parameter is the same as the CARD_READ_ONLY parameter in “Table 18”.

Configurable Parameters (IDGo 5000 Bio)
The IDGo 5000 Bio solution offers a number of configurable parameters. Unless stated
otherwise, these are the same for both versions of IDGo 5000 Bio (XP, and Windows 7/
8).

The IDGo 5000 Bio parameters can be modified by passing parameters when
executing the .NET BioManager assembly (Precise). “Table 21” presents the list of
configurable parameters and provides an example when using the “installation
parameter” method.

-p Sets the list of the supported
extended PINs.

1 byte bit mask
where:
bit 1 = PIN role#3
bit 2= PIN role#4
bit 3 = PIN role#5
bit 4 = PIN role#6
bit 5 = PIN role#7

All extended PINs
supported.

-p:03 (PIN roles #3
and #4 supported)

-f Force the user to change all
PINs at first use. This applies to
all PINs;

None The PINs do not have to
be changed.

-f

-k Disables key injection. None Key injection is allowed. -k

-l Disables possibility to revert the
'-k' configuration. If the '-l'
parameter is set then key
injection is no more possible.

None Key injection can be
enabled after a "-k"
configuration.

-l

-u Unblock PIN also unblocks FP
If set, unblocking the PIN also
unblocks the FP authentication.
Note: This feature is available
from V7.1.0.1 of the minidriver
.dll. It is used only if the
Biomanager is present and the
UVM is not 01 (PIN only)

1 = Yes
0 = No

0 -u:0
-u:1

-n Sets the maximum number of
containers.
The number of containers
cannot be modified after
installation (no property).

1-15 15 -n:12
-n:15

Table 20 - Installation Parameters (continued)

Parameter Description Possible values Default value Sample

Table 21 - IDGo 5000 Bio Specific Configurable Parameters

Parameter Description Possible values Default
value

Example

-p Sets the UVM of the card. For practical
reasons, this is usually set to PIN only.
Otherwise it is not possible to logon with
the card in modes 2 and 4 which require an
FP because no FPs are enrolled on the
card yet.

One of the following values:
01: PIN Only (UVM1)
02: Fingerprint (FP) Only
(UVM2)
04: PIN OR Fingerprint
(UVM3)
08: PIN AND Fingerprint
(UVM4)

01 -p:01
-p:02
-p:04
-p:08

Configuring Parameters 157
-a Access Condition to FMA. admin: Admin support
(Challenge - Response) is
required to change the
biometric settings and the
UVM.
pin: User can change the
biometric settings and UVM
without admin support. He
or she just has to
authenticate him/herself
according to the current
UVM.

Admin -a:pin
-a:admin

-m Allowed UVMs.
In case the above parameter is set to PIN,
this parameter allows the administrator to
restrict the list of UVMs the user can
choose from.

One byte bit mask
combination of the following
values:
01: PIN Only (UVM1)
02: Fingerprint (FP) Only
(UVM2)
04: PIN OR FP (UVM3)
08: PIN AND FP (UVM4)

0F: All -m:0F (all UVM
allowed)
-m:03 (UVM1 +
UVM2)

-n Min. required number of fingerprints
enrolled
For example when set to 2, implies the
requirement is for the user to enroll at least
a 2nd finger as backup.

0..10 1 -n:1

-r Maximum number of attempts before
fingerprint verification is blocked

1.. 255 10 -r:5
-r:10

-t Maximum number of fingerprint templates
that can be stored on the card

1..10 10 -t:1
-t:7
-t:10

Table 21 - IDGo 5000 Bio Specific Configurable Parameters (continued)

Parameter Description Possible values Default
value

Example

158 IDPrime .NET Smart Card Integration Guide
The desired values for these configurable parameters can be set at the time of
production of the cards. Otherwise they could be set through a web or client tool
designed for such a purpose.

-i Indicates which of the fingers of each hand
can be enrolled and used for authentication
This value must be interpreted as a bits
field 'b16 b15 b14 b13 b12 b11 b10 b9 b8
b7 b6 b5 b4 b3 b2 b1' where the 10 lsb of
the value are used to set/unset the
fingerprints of both hands. Bits b11 to b16
are not used.
The fingerprints are represented as follows
in this bits field:

b1 = 1: thumb of right hand is allowed.
b2 = 1: index finger of right hand is allowed.
b3 = 1: middle finger of right hand is
allowed.
b4 = 1: ring finger of right hand is allowed.
b5 = 1: little finger of right hand is allowed.
b6 = 1: thumb of the left hand is allowed.
b7 = 1: index finger of left hand is allowed.
b8 = 1: middle finger of left hand is allowed.
b9 = 1: ring finger of left hand is allowed.
b10 = 1: little finger is of left hand is
allowed.
b11 – b16 are ignored.

Any combination of fingers
and thumbs:
0x0001..0x03FF

All
(0x03FF)

Both thumbs:
'00000000
00100001'
(0x0021)

Fingers 2,3,7,8:
'00000000
11000110'
(0x00C6).

All fingers and
both thumbs:
'00000011
11111111'
(0x03FF).

-f False Acceptance Rate (FAR)
This is the measure of the likelihood that
the biometric security system will
incorrectly accept an access attempt by an
unauthorized user
Recommended range is 5,000-50,000. 1
false match accepted out of the FAR value.
The parameter stored in the card is not the
FAR itself but 0x7FFFFFFFh / FAR.

1,000 - 1,000,000 10,000 FAR = 1K:
-f: 214748
(result of
0x7fffffff/1000 in
decimal format)
Note: The value
must be in
decimal format

Table 21 - IDGo 5000 Bio Specific Configurable Parameters (continued)

Parameter Description Possible values Default
value

Example

A

Troubleshooting

This appendix includes information to help solve problems encountered while
developing IDPrime .NET Card applications.

Communication Problems
The following is a checklist of things to do when you suspect that you are having a
communication problem with your card. For the purposes of this document, a
communication problem is something that occurs when your software seems to be
properly installed, but you can't connect to or see the card.

The Easy Checklist
■ Ensure that the smart card really is in the reader.

■ Ensure that the correct smart card really is in the reader.

■ Ensure the reader is plugged in.

■ Check to see if the driver for the reader is installed. To do this, look at your device
manager, and ensure that the reader you are using is visible under the “Smart Card
Readers” section.

■ Ensure that the smart card service is running. To do this, look at the service
manager for your machine, and ensure that “Smart Card” is started.

Further Steps
■ If another IDPrime .NET Card works in the same reader, there's a good chance that

the non-working card is dead. Please post on the Support forum to check the
replacement policy for your card.

■ If other (non .NET) cards work in the reader, but your IDPrime .NET Card does not,
it may be that there is a speed negotiation conflict between the cards and your
reader. If you have access to another reader on which the IDPrime .NET Card
works, you can use the Card Explorer tool to set the card to a lower communication
speed. If you have this problem (and whether setting the communication speed
lower fixes the problem or not), please post your issue on the Support forum with
the make and model of your reader. We closely track compatibility problems and
will work to resolve them.

160 IDPrime .NET Smart Card Integration Guide
SSO Option Deactivation Problem
Windows 7 and 8 come with a power saving mode by default. This feature sends the
Power Off command (63 00 00 …) to the reader after about 20-30 seconds after any
transaction to the smart card is completed. When this command is sent to the reader,
the reader essentially powers off the card, which triggers the SSO to be deactivated.
As a workaround, you can configure the registry key to change the delay period, so that
the OS sends the command after a longer period of inactivity.

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\calais\

“CardDisconnectPowerDownDelay”= dword:xxh

Type: REG_DWORD

Value: xx is the delay period in seconds.

To modify the registry key, use the registry editor (from Start > Run, type regedit).

B

Marshaller Stub Sample

This appendix describes a C++ visual project sample that reproduces the steps of a
scenario using the stub and marshaller.

The steps to perform are:

1 Connect to the minidriver assembly.

2 Verify the User PIN

3 Read all certificates and decompress them in a storage array

4 Choose the certificate/container for PKI operations (the first one in this sample)

5 Sign some data with a card using PKCS#1

6 Encrypt some data (with RSA software algorithm and card public key)

7 Decrypt the data with the card

#define _WIN32_WINNT 0x0400

#undef UNICODE
#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
#include <ctype.h>
#include <windows.h>
#include <winscard.h>

#include "CardModuleService.h"
#include "zlib/zlib.h"
#include "rsa/cr_rsa.h"

//--
//--
#define MAX_CONTAINERS (15)

typedef struct _DATA_
{
 BYTE *pData;
 DWORD dwDataLen;
} DATA;

static CardModuleService* mdService = NULL;

static string* readerDiscovery = NULL;
static string* instanceName = NULL;

162 IDPrime .NET Smart Card Integration Guide
static DATA pCertificate[MAX_CONTAINERS];
static DWORD dwNbCert = 0;

static BYTE pubKeyModulus[256];
static BYTE pubKeyExponent[4];
static DWORD dwPubKeyByteLen;

static BYTE dataToSign[256];
static BYTE dataToEncypt[256];
static BYTE encryptedData[256];
static DWORD dwEncryptedLen;

// Default Hash OID for SHA-1
static BYTE SHA_DER_SIGN_HEADER[] =
{
 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, 0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00,

0x04, 0x14
};

//--
//--
static BOOL connectMiniDriver()
{
 if (!mdService)
 {
 try
 {
 // Connect to Minidriver Service
 readerDiscovery = new string("selfdiscover");
 instanceName = new string("MSCM");

 // Connect in self discovery mode
 mdService = new CardModuleService(readerDiscovery, // Reader self
discovery mode
 5, // Minidriver port number = 5,
mandatory for v1 compatibility
 instanceName // Service name = MSCM
);

 delete readerDiscovery;
 readerDiscovery = NULL;

 delete instanceName;
 instanceName = NULL;
 }

 catch(...)
 {
 return FALSE;
 }
 }

 return TRUE;
}

//--
//--
static BOOL releaseMiniDriver()
{
 if (mdService)

Marshaller Stub Sample 163
 {
 try
 {
 delete mdService;
 mdService = NULL;
 }
 catch(...)
 {
 }
 }

 return TRUE;
}

//--
//--
void main(void)
{
 BOOL bRes;

 //
 // Connect to MiniDriver Service
 //
 bRes = connectMiniDriver();

 if (!bRes)
 {
 goto _END;
 }

 //
 // Verify User PIN (hard-coded value = "0000")
 //
 try
 {
 u1Array *userPIN = new u1Array(4);
 memcpy_s(userPIN->GetBuffer(), 4, "0000", 4);
 mdService->VerifyPin(1, userPIN);

 printf("User PIN verified\n");

 // Cleanup
 if (userPIN != NULL)
 {
 delete userPIN;
 }
 }

 catch(...)
 {
 printf("PIN verification failed :(\n");

 goto _END;
 }
 printf("\n");

 //
 // Read all certificates and uncompress them
 //
 for (int i = 0; i < MAX_CONTAINERS; i++)
 {
 u1Array *compCert = new u1Array(0);

164 IDPrime .NET Smart Card Integration Guide
 string *fileName = NULL;

 // Read compressed certificate in mscp\kxcXX file (XX = container index)
 try
 {
 char szName[32];

 sprintf(szName, "mscp\\kxc%02x", i);

 fileName = new string(szName);
 compCert = mdService->ReadFile(fileName, 0);

 dwNbCert++;

 // Uncompress Certificate value with zlib and store it in
pCertificate array
 int err = 0;

 pCertificate[i].dwDataLen = compCert->GetBuffer()[2] + (compCert-
>GetBuffer()[3] * 256);
 pCertificate[i].pData = (BYTE *)malloc(pCertificate[i].dwDataLen);

 err = uncompress(pCertificate[i].pData, &pCertificate[i].dwDataLen,
&compCert->GetBuffer()[4], compCert->GetLength() - 4);
 }
 catch (...)
 {
 // Unable to read file -> Certificate not exists for this container
 pCertificate[i].pData = NULL;
 pCertificate[i].dwDataLen = 0;
 }

 // Cleanup
 if (compCert != NULL)
 {
 delete compCert;
 }

 if (fileName != NULL)
 {
 delete fileName;
 }
 }

 printf("Number of certificate(s): %d\n", dwNbCert);

 if (dwNbCert == 0)
 {
 goto _END;
 }
 printf("\n");

 //
 // Analyze certificates to find the one to use
 // In this sample we take the first available certificate
 //
 BYTE bContainerIdx = 0;

 for (int i = 0; i < MAX_CONTAINERS; i++)
 {
 if (pCertificate[i].pData != NULL)
 {

Marshaller Stub Sample 165
 bContainerIdx = (BYTE)i;
 break;
 }
 }

 //
 // Get public key of selected container
 //
 try
 {
 u1Array *container = new u1Array(0);

 container = mdService->GetCAPIContainer(bContainerIdx);

 // Scan the container buffer to find the public key value (Modulus /
Exponent) of Exchange key
 // See the Integration guide for details about buffer format
 BYTE *ptr = container->GetBuffer();
 int i = 0;
 BYTE keyType;

 while (i < (int)container->GetLength())
 {
 // Key type TLV (Tag = 0x03) - L is coded on 1 byte, V is always 1
byte
 if (ptr[i] == 0x03)
 {
 // Store key type (Exchange or Signature) contained in V
 keyType = ptr[i+2];

 i += 3; // Skip T, L and V bytes
 }

 // Public Exponent TLV (Tag = 0x01) - L is coded on 1 byte, V is
always 4 bytes
 if (ptr[i] == 0x01)
 {
 // Store Public Exponent if the current key is the exchange key
(Type = 0x01)
 if (keyType == 0x01)
 {
 memcpy(pubKeyExponent, &ptr[i+2], 4);
 }

 i += 6; // Skip T, L and V bytes
 }

 // Public Modulus TLV (Tag = 0x02) - L is coded on 1 byte, V is
variable length
 if (ptr[i] == 0x02)
 {
 // Byte length of Modulus, see the Integration guide for details
about the <<4 bit shift!
 dwPubKeyByteLen = (ptr[i+1]<<4);

 // Store Public Exponent if the current key is the exchange key
(Type = 0x01)
 if (keyType == 0x01)
 {
 memcpy(pubKeyModulus, &ptr[i+2], dwPubKeyByteLen);
 }

166 IDPrime .NET Smart Card Integration Guide
 i += (2+dwPubKeyByteLen); // Skip T, L and V bytes
 }
 }

 // cleanup
 if (container != NULL)
 {
 delete container;
 }

 // Display Public key Modulus
 printf("Public key Modulus: ");

 for (int i = 0; i < (int)dwPubKeyByteLen; i++)
 {
 printf("%02X", pubKeyModulus[i]);
 }

 printf("\n");

 // Display Public key Exponent
 printf("Public key Exponent: ");

 for (int i = 0; i < 4; i++)
 {
 printf("%02X", pubKeyExponent[i]);
 }

 printf("\n");
 }
 catch(...)
 {
 printf("Get Public key container failed :(\n");

 goto _END;
 }
 printf("\n");

 //
 // Sign a data with RSA private key in container associated to selected
 // certificate. In this sample we assume that we will sign a SHA-1 on 20

 // bytes
 //
 BYTE hashData[20];

 // Fake SHA-1 for this sample = A1...A1 (20 bytes)
 memset(hashData, 0xA1, sizeof(hashData));

 // Add PKCS#1 padding for signature
 memset(dataToSign, 0x00, sizeof(dataToSign));
 dataToSign[0] = 0x00;
 dataToSign[1] = 0x01;
 memset(&dataToSign[2], 0xFF, dwPubKeyByteLen - sizeof(SHA_DER_SIGN_HEADER)
- sizeof(hashData) - 3);
 dataToSign[dwPubKeyByteLen - sizeof(SHA_DER_SIGN_HEADER) -
sizeof(hashData) - 1] = 0x00;

 // Add SHA-1 OID
 memcpy(&dataToSign[dwPubKeyByteLen - sizeof(SHA_DER_SIGN_HEADER) -
sizeof(hashData)],
 SHA_DER_SIGN_HEADER,
 sizeof(SHA_DER_SIGN_HEADER)

Marshaller Stub Sample 167
);

 // Add SHA-1 hashed data
 memcpy(&dataToSign[dwPubKeyByteLen - sizeof(hashData)],
 hashData,
 sizeof(hashData)
);

 // Send the data to sign using RSA raw decryption
 try
 {
 u1Array *signature = new u1Array(0);
 u1Array *data = new u1Array(dwPubKeyByteLen);
 data->SetBuffer(dataToSign);

 // Display data to sign
 printf("Data to sign: ");

 for (int i = 0; i < (int)data->GetLength(); i++)
 {
 printf("%02X", data->GetBuffer()[i]);
 }

 printf("\n");

 signature = mdService->PrivateKeyDecrypt(bContainerIdx, // Container
Index
 0x01, // Exchange key type
 data // Data to sign
);

 // Display Signature
 printf("Signature: ");

 for (int i = 0; i < (int)signature->GetLength(); i++)
 {
 printf("%02X", signature->GetBuffer()[i]);
 }

 printf("\n");

 // cleanup
 if (data != NULL)
 {
 delete data;
 }

 if (signature != NULL)
 {
 delete signature;
 }
 }
 catch(...)
 {
 printf("Signature failed :(\n");

 goto _END;
 }
 printf("\n");

 //
 // Decrypt a data with RSA private key in container associated to selected

168 IDPrime .NET Smart Card Integration Guide
 // certificate. In this sample we encrypt a fake 3DES key data with software
 // RSA and card public key, then the data is decypted using the card
 //
 BYTE des3Key[24];

 // Fake 3DES key for this sample = 3D...3D (24 bytes)
 memset(des3Key, 0x3D, sizeof(des3Key));

 // Add PKCS#1 padding for encryption
 memset(dataToEncypt, 0x00, sizeof(dataToEncypt));
 dataToEncypt[0] = 0x00;
 dataToEncypt[1] = 0x02;
 memset(&dataToEncypt[2], 0xFF, dwPubKeyByteLen - sizeof(des3Key) - 3);
 dataToEncypt[dwPubKeyByteLen - sizeof(des3Key) - 1] = 0x00;

 // Add 3DES key data
 memcpy(&dataToEncypt[dwPubKeyByteLen - sizeof(des3Key)],
 des3Key,
 sizeof(des3Key)
);

 // Encrypt Data with RSA software and RSA plublic key read from card
 R_RSA_PUBLIC_KEY rsaKeyPublic;

 rsaKeyPublic.bits = dwPubKeyByteLen*8;

 memcpy(rsaKeyPublic.modulus, pubKeyModulus, dwPubKeyByteLen);

 memset(rsaKeyPublic.exponent, 0x00, dwPubKeyByteLen) ;
 memcpy(&rsaKeyPublic.exponent[dwPubKeyByteLen - 4], pubKeyExponent, 4);

 dwEncryptedLen = dwPubKeyByteLen;

 RSAPublicBlock(encryptedData,
 (unsigned int *)&dwEncryptedLen,
 dataToEncypt,
 dwPubKeyByteLen,
 &rsaKeyPublic
);

 // Send the data to RSA raw decryption
 try
 {
 u1Array *clearData = new u1Array(0);
 u1Array *data = new u1Array(dwEncryptedLen);
 data->SetBuffer(encryptedData);

 // Display encrypted data
 printf("Encrypted data: ");

 for (int i = 0; i < (int)data->GetLength(); i++)
 {
 printf("%02X", data->GetBuffer()[i]);
 }

 printf("\n");

 clearData = mdService->PrivateKeyDecrypt(bContainerIdx, // Container
Index

0x01, // Exchange key type
data // Data to decrypt

Marshaller Stub Sample 169
);

 // Display Decrypted data
 printf("Decrypted data: ");

 for (int i = 0; i < (int)clearData->GetLength(); i++)
 {
 printf("%02X", clearData->GetBuffer()[i]);
 }

 printf("\n");

 // cleanup
 if (data != NULL)
 {
 delete data;
 }

 if (clearData != NULL)
 {
 delete clearData;
 }
 }
 catch(...)
 {
 printf("Signature failed :(\n");

 goto _END;
 }
 printf("\n");

_END:
 //
 // Release MiniDriver Service
 //
 releaseMiniDriver();

 //
 // pCertificate array cleanup
 //
 for (int i = 0; i < MAX_CONTAINERS; i++)
 {
 if (pCertificate[i].pData != NULL)
 {
 free(pCertificate[i].pData);
 }
 }

 printf("Press a key to exit...");
 getch();
}

Term
inology
Abbreviations

ACL Access Condition List

AD Application Domain

API Application Programming Interface

CLR Common Language Runtime

CP Credential Provider

CSP Cryptographic Service Provider

ECMA European Computer Manufacturers Association

EEPROM Electrical Erasable Programmable Read-only Memory

GUID Gemalto Unique Identifier

IL Intermediate Language

MSCM Microsoft Card Module

MSDN Microsoft Developer Network

OLH Online Help

OS Operating System

PIN Personal Identification Number

PKI Public Key Infrastructure

RAM Random Access Memory

ROM Read-Only Memory

SSO Single Sign-on

Terminology 171
Glossary

Application Domain Every application executes in a secure, isolated
execution area, which enforces strict firewalls between
applications and helps maintain data integrity. Data in
one domain cannot be accessed from any other domain.

Access Manager Admin
Key

An optional additional 3DES key that can be activated
using the -s installation parameter. It can be used as an
alternative to the Admin Key for some (but not all)
functions. The role of the Access Manager Admin key is
to be able to administer the .NET card. For example,
you need to authenticate yourself with this role if you
want to load a new assembly.

Admin Key A 3DES key used by the administrator to calculate the
response to a challenge when unblocking the card.

Base (CSP) Microsoft’s default software library that implements the
Cryptographic Application Programming Interface
(CAPI).

Card Explorer The Card Explorer is the tool available to manage
IDPrime .NET Cards. It is part of the IDPrime .NET SDK.

Certificate A certificate provides identification for secure
transactions. It consists of a public key and other data,
all of which have been digitally signed by a CA. It is a
condition of access to secure e-mail or to secure Web
sites.

Certificate Authority An entity with the authority and methods to certify the
identity of one or more parties in an exchange (an
essential function in public key crypto systems).

Common Language
Runtime (CLR)

A core component of .NET. It is Microsoft's
implementation of the Common Language Infrastructure
(CLI) standard, which defines an execution environment
for program code. In the CLR, code is expressed in a
form of bytecode called the Common Intermediate
Language (CIL, previously known as MSIL—Microsoft
Intermediate Language).

Credential Provider (CP) A CP is the Windows 7 (and later versions) software
module in charge of the authentication of the user based
on various technologies. The standard Windows CP
handles the Username / Password and smart card
based PIN methods. Gemalto’s IDGo 800 CP provides
additional features such as the "PIN change at first use"
option, or the biometrics authentication method.

Cryptography The science of transforming confidential information to
make it unreadable to unauthorized parties.

Digital Signature A data string produced using a Public Key Crypto
system to prove the identity of the sender and the
integrity of the message.

Encryption A cryptographic procedure whereby a legible message
is encrypted and made illegible to all but the holder of
the appropriate cryptographic key.

172 IDPrime .NET Smart Card Integration Guide
Gemalto Unique
identifier

Unique Id of .NET card. By default 4 byte fixed value
(0x2E4E4554) || 12-byte card serial number.

Intermediate Language
(IL)

A new language designed to be efficiently converted into
native machine code on different types of devices. IL is
based on an abstract stack-based processor
architecture.

Key A value that is used with a cryptographic algorithm to
encrypt, decrypt, or sign data. Secret key crypto
systems use only one secret key. Public key crypto
systems use a public key to encrypt data and a private
key to decrypt data.

Key Length The number of bits forming a key. The longer the key,
the more secure the encryption. Government
regulations limit the length of cryptographic keys.

Manifest An assembly manifest is a text file containing metadata
about .NET assemblies. It describes the relationship and
dependencies of the components in the assembly,
versioning information, scope information and the
security permissions required by the assembly.

PKCS#11 Standard and open software library specified by RSA
Laboratories and implementing smart card
cryptographic functions. Refer to http://www.rsa.com/
rsalabs/node.asp?id=2133

Remoting .NET Remoting allows an application to make an object
(termed remotable object) available across remoting
boundaries, which includes different application
domains, processes or even different computers
connected by a network

Single Sign-on (SSO) A mechanism provided with the IDGo 800 CP, where the
user needs to present the User PIN once only during a
session, as long as the .NET card is not removed. If the
standard Microsoft credential provider is used, activating
the SSO mechanism has no effect and the user PIN
may need to be presented more than once during a
session.

Sinks Sinks are links in a chain that can be used by a proxy to
send a message to a remote object. Usually the sinks
modify the data before sending it to the next sink.

Strong name signing Strong-name signing, or strong-naming, gives a
software component a globally unique identity that
cannot be spoofed. Strong names are used to
guarantee that component dependencies and
configuration statements map to exactly the right
component and component version. A strong name
consists of the assembly's identity (simple text name,
version number, etc.), plus a public key token and a
digital signature.

Strongly typed object A class that contains data which is written and read
using access functions. Since each data has a specific
type, errors are caught at compile time instead of
runtime.

http://www.rsa.com/rsalabs/node.asp?id=2133
http://www.rsa.com/rsalabs/node.asp?id=2133

R
eferences
Standards and Specifications
■ Smart Card Minidriver Specification for Windows Base Cryptographic Service Provider (Base CSP)

and Smart Card Key Storage Provider (KSP), Version 5.07, September 12, 2007 from Microsoft.

■ Windows Smart Card Minidriver Specification, Version 6.02, March 7, 2008 from Microsoft.

■ Windows Smart Card Minidriver Specification, Version 7.06, July 1, 2009 from Microsoft.

■ ISO/IEC 7816: Information Technology – Identification cards – Integrated circuit cards with contacts

– Part 1: Physical characteristics

– Part 2: Cards with contacts -- Dimensions and location of the contacts

– Part 3: Electronic signals and transmission protocols
Defines the characteristics of the electronic signals exchanged between the card and the
terminal, and the two possible low-level communication protocols that can be used. (T = 0 is an
asynchronous half-duplex character transmission protocol; T = 1 is an asynchronous half-
duplex block transmission protocol).

– Part 4: Industry commands for interchange
Defines a set of standard commands for smart cards, as well as a hierarchical file system
structure for cards. These commands are the base of most existing card protocols.

■ ISO/IEC-10536: Identification Cards - Contactless Integrated Circuit(s) Cards - Close-coupled
Cards

– Part 1: Physical characteristics

– Part 2: Dimensions and Location of Coupling Areas

– Part 3: Electronic Signals and Reset Procedures

■ ECMA-335: Common Language Infrastructure
Defines the Common Library Infrastructure (CLI), which ensures that applications written in multiple
high-level languages may be executed in different system environments without the need to rewrite
the application to take into consideration the unique characteristics of those environments.

■ PC/SC: Interoperability Specification for ICCs and Personal Computer Systems
Defines low-level device interfaces and device-independent application APIs as well as resource
management, to allow multiple applications to share smart card devices attached to a system.

■ NIST: FIPS PUB 140-2: Security Requirements for Cryptographic Modules
Specifies the security requirements that will be satisfied by a cryptographic module utilized within a
security system protecting sensitive but unclassified information.

Note: These specifications can be downloaded from http://msdn.microsoft.com/en-us/windows/
hardware/gg487500.aspx.

http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.pcscworkgroup.com/
http://csrc.nist.gov/publications/PubsFIPS.html
http://msdn.microsoft.com/en-us/windows/hardware/gg487500.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg487500.aspx

174 IDPrime .NET Smart Card Integration Guide
Recommended Reading
■ For further reading about IDPrime .NET Cards, please go to the Gemalto product catalog at http://

www.gemalto.com/products/dotnet_card/

■ Advanced .NET Remoting from Ingo Rammer; APress January 1, 1970); ISBN: 1590590252

■ Common Language Infrastructure Annotated Standard from James S. Miller, Susann Ragsdale,
Jim Miller; Addison-Wesley Pub Co, 1st edition (October 24, 2003); ISBN: 0321154932

■ .NET Framework Security from Brian A. LaMacchia, Sebastian Lange, Matthew Lyons, Rudi Martin,
Kevin T. Price; Addison-Wesley Pub Co, 1st edition (April 24, 2002); ISBN 067232184X

Useful Web Site Addresses
Microsoft’s - .NET Framework Developer Center (msdn.microsoft.com)

http://www.gemalto.com/products/dotnet_card
http://www.gemalto.com/products/dotnet_card
http://www.amazon.com/exec/obidos/ASIN/1590590252/dotnetremot0b-20/ref=nosim/102-6795746-3324960
http://www.amazon.com/exec/obidos/tg/detail/-/0321154932/qid=1078962833/sr=1-1/ref=sr_1_1/102-6795746-3324960?v=glance&s=books
http://www.amazon.com/exec/obidos/tg/detail/-/067232184X/qid=1078871460/sr=1-1/ref=sr_1_1/102-6795746-3324960?v=glance&s=books
http://msdn.microsoft.com/en-us/netframework/default.aspx

	IDPrime .NET Smart Card
	Introduction
	Who Should Read This Book
	Documentation
	Conventions
	Windows Versions
	Typographical Conventions

	1 Smart Card Background
	Smart Card Basics
	Smart Card Hardware
	Smart Card
	Contactless Smart Cards
	USB-capable Smart Cards

	Device/Interface

	Smart Card Software
	Operating System
	Applications
	Runtime Environment
	Loader

	The IDPrime .NET Card Components
	Windows 7 and 8 (and Server 2008 R2 and Server 2012)
	On-Card Components
	Off-Card Components

	Windows Vista and Server 2008
	Windows XP and Server 2003

	Cryptographic Application Programming Interface (CAPI)
	Introducing the Windows Smart Card Framework Architecture
	Smart Card Standards and Specifications
	IDPrime .NET Smart Card Characteristics Summary
	Card Hardware Characteristics
	Card Software Characteristics
	Middleware Architecture
	Main Functions Supported
	Main Use Cases Supported
	Compliance with Operating Systems
	Compliance with Microsoft Applications
	Compliance with 3rd-Party Applications

	2 2 The IDPrime .NET Card
	Background
	Why .NET on a Smart Card?
	IDPrime .NET Card Application Development

	IDPrime .NET Card Characteristics
	Card Contents
	File System
	CardConfig.xml File
	Access Manager Applications
	ContentManager
	SampleAccessManager

	Additional Contents
	Assemblies
	Data Files

	Smart Card Profile
	.NET Card Specifications
	IDPrime .NET Card Certifications

	Common Language Runtime (CLR)
	Common Language Runtime (CLR) Responsibilities

	.NET Smart Card Framework Vs. .NET Framework

	3 Concepts and Models
	Assemblies
	Assemblies on the IDPrime .NET
	Assembly Security
	Loading Assemblies

	Application Domains
	Implementation
	Differences between IDPrime .NET Application Domains and Standard .NET Application Domains

	Application Lifecycle
	Loading
	Installation
	Execution
	Termination
	Unloading

	Remoting
	Remoting in the .NET Smart Card Framework
	Channels and Ports
	Example
	Server Sample Code
	Sample Client Code

	Using Custom Sinks
	Why Make a Custom Sink?
	What Are the Limitations?
	Designing a Custom Sink
	Using a Custom Sink

	Garbage Collection
	Garbage Collection
	Starting the Garbage Collector Manually

	The GCControlAttribute

	File System
	Key Points about the IDPrime .NET File System
	Example

	Data Storage
	Data Stored in Persistent Memory
	Data Stored in Volatile Memory
	MemoryStreams

	Transactions
	Why Transactions?
	How Transactions Work
	Example

	Out-of-Transaction Objects

	Security
	Access Manager
	Application Security
	Ensuring the Integrity and Authenticity of Card-Resident Binaries
	Matching the Card-Resident Binary to the Original .NET Assembly
	Ensuring Code Security

	Data Security
	Data Storage in Application Domains
	Data Storage in the File System

	Supporting Legacy Infrastructure
	Who Should Read This Section?
	The Problem with Legacy Applications
	Using Attributes to Manage APDUs
	Returning Data from the Card
	Handling Incorrect Requested Lengths

	Card Reset Event
	What Does a Reset Mean?
	Handling the Reset Event

	Card Services
	ContentManager
	Features
	Examples
	More Information

	SampleAccessManager
	Features
	SampleAccessManager Roles
	SampleAccessManager Rules
	SampleAccessManager Client Information

	4 Card Explorer
	Introduction
	Starting Card Explorer
	Connecting to the IDPrime .NET Card
	Cards with the Access Manager Admin Key

	Toolbar
	Tab Layout
	Select Smartcard Reader Details

	Explorer Tab
	Services Tab
	Access Manager

	Card Element Properties
	Card Properties
	Configuring the Communication and Chip Speed

	Folder/Directory and File Properties

	Public Key Tokens
	Identifying an Assembly
	Controlling Access to a File or Folder on the Card

	Managing Folders and Files
	Managing Folders
	Delete
	New Folder
	Load File
	Properties

	Managing Files
	Execute
	Delete
	View Content
	Save to PC as
	Properties
	Restrictions

	5 Visual Studio .NET Integration
	Managing the .NET Card Add-in
	How to Manage the Card Explorer Add-in

	Add-in Vs. Standalone Differences
	Templates
	Creating a Server Project
	Creating a Client Project

	6 Getting Started
	Using Templates to Make a Server Application
	Creating a New Solution
	Opening an Existing Solution
	Creating an IDPrime .NET Card Server Application
	Debugging
	Loading the Server onto the Card
	Starting a Service
	Deleting a Service

	Using Templates to Make a Client Application
	Creating a New Solution
	Opening an Existing Solution
	Creating a Client Application to Access a Service Running on an IDPrime .NET Card

	Creating an On-Card Application without Templates
	Creating an Access Manager Project Using No On-Card Templates

	Building a Project from the Command Line
	Compiling Your Application with csc

	Building with NAnt
	Compiling Your Application Using NAnt

	Running Your On-card Application with a Microsoft Debugger
	Server-Side Code Changes
	Client-Side Code Changes
	Changes to the Project Settings
	Moving from APDU to Tcp
	Moving Back from Tcp to APDU

	7 Code Samples
	General Instructions
	SecureSession
	Description
	Running the Sample
	Code Extract

	APDUAttribute
	Description
	Execution
	Code Extract

	Transactions
	Description
	Execution
	Code Extract

	8 Client-Side Components
	SmartCard_Stub
	Referencing the ContentManager from Your Project

	SmartCard.Runtime
	Client Remoting Components
	CardAccessor Class
	AccessManagerClient Interface

	C++ Marshaller
	Why a C++ Marshaller?
	Where Can I Find the C++ Marshaller?
	Using the Marshaller

	9 Introduction to Part 2
	10 Minidriver Interface V5/V6/V7
	11 Minidriver V5 Methods
	Authentication Management Methods
	byte[] GetChallenge()
	void ExternalAuthenticate(byte[] response)
	void ExternalAuthenticateAM(byte[] response)
	void ChangeReferenceData(byte mode, byte role, byte[] oldPin, byte[] newPin, int maxTries)
	Unblock (mode = 1):
	Change (mode = 0):

	void VerifyPin(byte role, byte[] oldPin)
	int GetTriesRemaining(byte role)
	void LogOut(byte role)
	bool IsAuthenticated(byte role)
	byte MaxPinRetryCounter {get;}
	bool AdminPersonalized {get;}
	bool UserPersonalized {get;}

	Containers & Crypto Management Methods
	void CreateCAPIContainer(byte ctrIndex, bool keyImport, byte keySpec, int keySize, byte[] keyValue)
	void DeleteCAPIContainer(byte ctrIndex)
	byte[] GetCAPIContainer(byte ctrIndex)
	byte[] PrivateKeyDecrypt(byte ctrIndex, byte keyType, byte[] encryptedData)

	Information Management Methods
	int[] QueryFreeSpace()
	int[] QueryKeySizes()

	File System Management Methods
	void CreateFile(string path, byte[] acls, int initialSize)
	void CreateDirectory(string path, byte[] acls)
	void WriteFile(string path, byte[] data)
	byte[] ReadFile(string path, int maxBytesToRead)
	void DeleteFile(string path)
	void DeleteDirectory(string path)
	string[] GetFiles(string path)
	byte[] GetFileProperties(string path)

	Version Management Methods
	string Version {get;}
	void SetHostVersion(uint hostVersion)

	12 Minidriver V6/V7 Methods
	Authentication Management Methods
	Role Identifiers
	byte[] GetChallengeEx(byte role)
	byte[] AuthenticateEx(byte mode, byte role, byte[] pin)
	Plaintext Authentication (mode = 0):
	Session PIN Authentication (mode = 1 / 2):

	void DeauthenticateEx(byte roles)
	void ChangeAuthenticatorEx(byte mode, byte oldRole, byte[] oldPin, byte newRole, byte[] newPin, int maxTries)
	Unblock (mode = 1):
	Change (mode = 2):
	Example Scenario to Change a PIN with ChangeAuthenticatorEx():

	Properties Management Methods
	byte[] GetContainerProperty(byte ctrIndex, byte property, byte flags)
	byte[] SetContainerProperty(byte ctrIndex, byte property, byte[] data, byte flags)
	byte[] GetCardProperty(byte property, byte flags)
	byte[] SetCardProperty(byte property, byte[] data, byte flags)

	13 APDU Encoding
	Introduction
	APDU Format
	Argument Encoding
	Payload with length > FF

	MSCM Answer Interpretation
	The APDUs Exchange Flow

	14 Hivecodes and Examples
	Generic Answer Formation for .NET Card Services (Except MSCM)
	Computing Hivecodes
	Namespace Hivecode
	Type Hivecode
	Method Hivecode

	MSCM Method Hivecodes
	Namespace Hivecodes
	Standard Type Hivecodes
	Exception Type Hivecodes
	Other Useful Type Hivecodes
	Other Useful Method Hivecodes

	APDUs Exchange Examples
	Get Challenge
	Get Response
	Analysis of the Response

	External Authenticate
	Log Out

	15 Configuring Parameters
	Introduction
	Configurable Parameters (.NET Minidriver Assembly)
	Using SetCardProperty
	PIN Policy and Other Gemalto Proprietary Parameters

	Using Installation Parameters

	Configurable Parameters (IDGo 5000 Bio)

	A Troubleshooting
	Communication Problems
	The Easy Checklist
	Further Steps

	SSO Option Deactivation Problem

	B Marshaller Stub Sample
	Terminology
	Abbreviations
	Glossary

	References
	Standards and Specifications
	Recommended Reading
	Useful Web Site Addresses

